These are sample MCQs to indicate pattern, may or may not appear in examination

University of Mumbai Online Examination 2020

Program: TE Mechanical Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester VI

Course Code: MEC603 and Course Name: FINITE ELEMENT ANALYSIS

Time: 1 hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	The primary variable in the problem of pipe flow is
Option A:	Viscosity
Option B:	Hydrostatic Pressure
Option C:	Flow Source
Option D:	Flow rate
Q2.	To tally the computed shape functions of a 3 noded triangular element
	which of the following conditions should satisfy?
Option A:	Summation of all shape functions should be equal to zero
Option B:	Summation of all shape functions should be equal to one
Option C:	Summation of all shape functions should be equal to three
Option D:	Summation of all shape functions should be equal to (1/3)
Q3.	In a particular axial Deformation of Bar problem, if one end is subjected by
	an axial load and it is specified, then the type of boundary condition is
Option A:	Essential type
Option B:	Natural type
Option C:	Mixed type
Option D:	Cauchy's type
Q4.	If four springs are attached in series, extreme end points of this spring cart
	system are fixed. Assume node numbers are given from left to right serially,
	at which nodes displacements will be observed?
Option A:	1,2,3
Option B:	3,4,5
Option C:	2,3,4,5
Option D:	2,3,4
Q5.	For a differential equations in which the right-hand side value is specified
	with zero value, then it is called asdifferential equations.
Option A:	Non Homogeneous

Option B:	Homogeneous
Option C:	Heterogeneous
Option D:	Zero
Q6.	When a thin plate is subjected to loading in its own plane only the condition
	is called?
Option A:	Plane stress
Option B:	Plane strain
Option C:	Zero stress
Option D:	Zero strain
Q7.	In 2D finite element analysis, when thickness is very small as compared to the size of the domain, which of the following condition should be
	considered?
Option A:	Serendipity conditions
Option B:	Plane strain conditions
Option C:	Axis-symmetric conditions
Option D:	Plane stress conditions
Q8.	During assembly of element equations, the connectivity conditions
Option A:	Balanced
Option B:	Continuous
Option C:	Un balanced
Option D:	Discontinuous
Q9.	Identify the sequence of steps in Finite Element Method:
	1. Solving for primary variables
	2. Imposition of boundary conditions
	3. Post processing
	4. Finite Element Discretization
	5. Assemblage.
Ontion A:	$1_{2_{3}}$
Option R:	2 1 4 2 6 5
Option C:	1 1 5 2 6 2
Option C:	4-1-3-2-0-3
Option D.	4-0-3-2-1-3
010	With lumped mass matrix, the differential equation of vibration refers to
Ontion A:	Flastic Coupling
Ontion R.	Inertial Coupling
Option C:	Mode Supernosition
Option D:	Roth Inertial and Elastic Coupling
011	In stress strain relationship matrix [D] v stands for
<u>ч</u> тт.	

Uption A:	Volume
Option B:	Displacement
Option C:	Poisson's ratio
Option D:	Modulus of Elasticity
•	
Q12.	If deformation at node 1 and 2 of bar element is 0mm and 0.01193mm
	respectively, E=200KN/mm2 and length of element is 200mm then stress in
	the element is
Option A:	11.93N/mm2
Option B:	11.00N/mm2
Option C:	10.93N/mm2
Option D:	10N/mm2
Q13.	For two dimensional plane stress problems normal and shear stress are
Option A:	Zero
Option B:	Equal
Option C:	Not Equal
Option D:	Infinity
Q14.	For a particular FE mesh, the node numbers are assigned arbitrarily from
-	left to right for 1-D problem as (1, 4, 5, 3, 2), then the value of Half Band
	Width of the assembled global stiffness matrix is
Ontion A:	2
Option A.	2
Option B:	3
Option B: Option C:	2 3 4
Option B: Option C: Option D:	2 3 4 5
Option B: Option C: Option D:	2 3 4 5
Option B: Option C: Option D: Q15.	3 4 5 As per Euler Bernoulli Beam Theory, it is assumed that plane cross section
Option B: Option C: Option D: Q15.	3 4 5 As per Euler Bernoulli Beam Theory, it is assumed that plane cross section
Option B: Option C: Option D: Q15.	3 4 5 As per Euler Bernoulli Beam Theory, it is assumed that plane cross section
Option B: Option C: Option D: Q15.	3 4 5 As per Euler Bernoulli Beam Theory, it is assumed that plane cross section
Option A: Option A: Option D:	3 4 5 As per Euler Bernoulli Beam Theory, it is assumed that plane cross section
Option A: Option C: Option D: Q15. Option A: Option B: Option C:	3 4 5 As per Euler Bernoulli Beam Theory, it is assumed that plane cross section
Option A: Option D: Option D: Q15. Option A: Option B: Option C: Option D:	3 4 5 As per Euler Bernoulli Beam Theory, it is assumed that plane cross section
Option A: Option C: Option D: Q15. Option A: Option B: Option C: Option D:	3 4 5 As per Euler Bernoulli Beam Theory, it is assumed that plane cross section
Option A: Option D: Option D: Q15. Option A: Option B: Option C: Option D: Option D:	3 4 5 As per Euler Bernoulli Beam Theory, it is assumed that plane cross section
Option A: Option C: Option D: Q15. Option A: Option A: Option B: Option C: Option D: Q16.	3 4 5 As per Euler Bernoulli Beam Theory, it is assumed that plane cross section
Option A: Option D: Option D: Q15. Option A: Option B: Option C: Option D: Q16.	3 4 5 As per Euler Bernoulli Beam Theory, it is assumed that plane cross section
Option A: Option C: Option D: Q15. Option A: Option A: Option C: Option D: Q16.	3 4 5 As per Euler Bernoulli Beam Theory, it is assumed that plane cross section
Option A: Option C: Option D: Q15. Option A: Option B: Option C: Option D: Q16. Option A: Option A:	3 4 5 As per Euler Bernoulli Beam Theory, it is assumed that plane cross section
Option A: Option D: Option D: Q15. Option A: Option A: Option C: Option D: Q16. Option A: Option B: Option B: Option C:	2 3 4 5 As per Euler Bernoulli Beam Theory, it is assumed that plane cross section
Option A: Option C: Option D: Q15. Option A: Option A: Option C: Option D: Q16. Option A: Option A: Option B: Option B: Option C: Option C:	3 4 5 As per Euler Bernoulli Beam Theory, it is assumed that plane cross section
Option A: Option C: Option D: Q15. Option A: Option B: Option C: Option C: Option A: Option A: Option A: Option B: Option B: Option C: Option C: Option C: Option C:	3 4 5 As per Euler Bernoulli Beam Theory, it is assumed that plane cross section
Option A: Option C: Option D: Q15. Option A: Option A: Option B: Option C: Option D: Q16. Option A: Option A: Option B: Option C: Option C: Option C: Option C:	3 4 5 As per Euler Bernoulli Beam Theory, it is assumed that plane cross section

	coordinate transformation is greater than the degree of approximation used to represent a dependent variable , then that formulation is termed as
Option A:	Sub-parametric
Option B:	Iso-parametric
Option C:	Super parametric
Option D:	Poly parametric
Q18.	The secondary variable in the problem of axial deformation of bar is
Option A:	Young's Modulus
Option B:	Longitudinal Displacement
Option C:	Distributed axial force
Option D:	Axial load
Q19.	What is the relation between torque (T), with angular twist (θ), when Torque is subjected on a constant Circular cross section circular member with polar moment of Area (J), length (L), shear modulus (G) is
Option A:	(GL/J) θ
Option B:	(GJL) θ
Option C:	(GJ/L) θ
Option D:	(JL/G) θ
Q20.	The number of nodes in 1-D cubic order element are
Option A:	2
Option B:	4
Option C:	3
Option D:	5
Q21.	In analysis using CST element, for better results aspect ratio should be –
Option A:	Medium
Option B:	As large as possible
Option C:	Small
Option D:	As small as possible
Q22.	The weak form method is
Option A:	Gelerkin
Option B:	Least Square
Option C:	Rayliegh-Ritz
Option D:	Collocation
Q23.	The number of terms are required to describe interpolating polynomial for
	2D Triangular Quadratic Element as
Option A:	6
Option B:	10

Option C:	4
Option D:	3
Q24.	Normalizing eigenvector w.r.t. mass matrix is useful in
Option A:	Mode superposition
Option B:	Evaluating natural frequencies
Option C:	Frequency response
Option D:	Damped vibrations
Q25.	Which Variational Method we use to determine the unknown coefficient
	parameters by requiring the residual to vanish identically at N- selected
	points in the given Domain.
Option A:	Gelerkin
Option B:	Least Square
Option C:	Rayliegh-Ritz
Option D:	Collocation