## These are sample MCQs to indicate pattern, may or may not appear in examination

# University of Mumbai <br> Online Examination 2020 

Program: TE Mechanical Engineering
Curriculum Scheme: Revised 2016
Examination: Third Year Semester VI
Course Code: MEC603 and Course Name: FINITE ELEMENT ANALYSIS

Note to the students:- All the Questions are compulsory and carry equal marks .

| Q1. | The primary variable in the problem of pipe flow is -------------------- |
| :---: | :---: |
| Option A: | Viscosity |
| Option B: | Hydrostatic Pressure |
| Option C: | Flow Source |
| Option D: | Flow rate |
| Q2. | To tally the computed shape functions of a 3 noded triangular element which of the following conditions should satisfy? |
| Option A: | Summation of all shape functions should be equal to zero |
| Option B: | Summation of all shape functions should be equal to one |
| Option C: | Summation of all shape functions should be equal to three |
| Option D: | Summation of all shape functions should be equal to (1/3) |
| Q3. | In a particular axial Deformation of Bar problem, if one end is subjected by an axial load and it is specified, then the type of boundary condition is $\qquad$ ----------- |
| Option A: | Essential type |
| Option B: | Natural type |
| Option C: | Mixed type |
| Option D: | Cauchy's type |
| Q4. | If four springs are attached in series, extreme end points of this spring cart system are fixed. Assume node numbers are given from left to right serially, at which nodes displacements will be observed? |
| Option A: | 1,2,3 |
| Option B: | 3,4,5 |
| Option C: | 2,3,4,5 |
| Option D: | 2,3,4 |
| Q5. | For a differential equations in which the right-hand side value is specified with zero value, then it is called as $\qquad$ differential equations. |
| Option A: | Non Homogeneous |


| Option B: | Homogeneous |
| :--- | :--- |
| Option C: | Heterogeneous |
| Option D: | Zero |
|  |  |
| Q6. | When a thin plate is subjected to loading in its own plane only the condition <br> is called? |
| Option A: | Plane stress |
| Option B: | Plane strain |
| Option C: | Zero stress |
| Option D: | Zero strain |
|  | In 2D finite element analysis, when thickness is very small as compared to <br> the size of the domain, which of the following condition should be <br> considered? |
| Q7. | Serendipity conditions |
| Option A: | Plane strain conditions |
| Option B: | Axis-symmetric conditions |
| Option C: | During assembly of element equations, the connectivity conditions <br> pertaining to secondary variables at junction node are assumed to be -------- <br> Option D: |
| ---------------- |  |


| Option A: | Volume |
| :---: | :---: |
| Option B: | Displacement |
| Option C: | Poisson's ratio |
| Option D: | Modulus of Elasticity |
| Q12. | If deformation at node 1 and 2 of bar element is 0 mm and 0.01193 mm respectively, $\mathrm{E}=200 \mathrm{KN} / \mathrm{mm} 2$ and length of element is 200 mm then stress in the element is --------------- |
| Option A: | $11.93 \mathrm{~N} / \mathrm{mm} 2$ |
| Option B: | $11.00 \mathrm{~N} / \mathrm{mm} 2$ |
| Option C: | $10.93 \mathrm{~N} / \mathrm{mm} 2$ |
| Option D: | 10N/mm2 |
| Q13. | For two dimensional plane stress problems normal and shear stress are ------------- |
| Option A: | Zero |
| Option B: | Equal |
| Option C: | Not Equal |
| Option D: | Infinity |
| Q14. | For a particular FE mesh, the node numbers are assigned arbitrarily from left to right for 1-D problem as (1, 4,5,3,2) , then the value of Half Band Width of the assembled global stiffness matrix is $\qquad$ |
| Option A: | 2 |
| Option B: | 3 |
| Option C: | 4 |
| Option D: | 5 |
| Q15. | As per Euler Bernoulli Beam Theory, it is assumed that plane cross section -- $\qquad$ <br> to the axis of the beam remain plane and $\qquad$ to the axis after deformation |
| Option A: | Perpendicular, Parallel |
| Option B: | Perpendicular, Perpendicular |
| Option C: | Parallel, Perpendicular |
| Option D: | Parallel, Parallel |
| Q16. | Use of bigger size elements while compare to smaller size of elements for attaining FEM solution, then computational time takes is $\qquad$ ------ |
| Option A: | More |
| Option B: | Exact |
| Option C: | Infinite |
| Option D: | Less |
|  |  |
| Q17. | During FE formulation, the degree of approximation used to describe the |


|  | coordinate transformation is greater than the degree of approximation used to represent a dependent variable , then that formulation is termed as ------------------------- |
| :---: | :---: |
| Option A: | Sub-parametric |
| Option B: | Iso-parametric |
| Option C: | Super parametric |
| Option D: | Poly parametric |
| Q18. | The secondary variable in the problem of axial deformation of bar is $\qquad$ $\qquad$ |
| Option A: | Young's Modulus |
| Option B: | Longitudinal Displacement |
| Option C: | Distributed axial force |
| Option D: | Axial load |
| Q19. | What is the relation between torque $(T)$, with angular twist $(\theta)$, when Torque is subjected on a constant Circular cross section circular member with polar moment of Area (J), length (L), shear modulus (G) is $\qquad$ |
| Option A: | (GL/J) $\theta$ |
| Option B: | (GJL) $\theta$ |
| Option C: | (GJ/L) $\theta$ |
| Option D: | (JL/G) $\theta$ |
|  |  |
| Q20. | The number of nodes in 1-D cubic order element are ------------------ |
| Option A: | 2 |
| Option B: | 4 |
| Option C: | 3 |
| Option D: | 5 |
|  |  |
| Q21. | In analysis using CST element, for better results aspect ratio should be - |
| Option A: | Medium |
| Option B: | As large as possible |
| Option C: | Small |
| Option D: | As small as possible |
|  |  |
| Q22. | The weak form method is --------------------- |
| Option A: | Gelerkin |
| Option B: | Least Square |
| Option C: | Rayliegh-Ritz |
| Option D: | Collocation |
|  |  |
| Q23. | The number of terms are required to describe interpolating polynomial for 2D Triangular Quadratic Element as $\qquad$ |
| Option A: | 6 |
| Option B: | 10 |


| Option C: | 4 |
| :--- | :--- |
| Option D: | 3 |
|  |  |
| Q24. | Normalizing eigenvector w.r.t. mass matrix is useful in |
| Option A: | Mode superposition |
| Option B: | Evaluating natural frequencies |
| Option C: | Frequency response |
| Option D: | Damped vibrations |
|  | Which Variational Method we use to determine the unknown coefficient <br> parameters by requiring the residual to vanish identically at N- selected <br> points in the given Domain. |
| Q25. | Gelerkin |
| Option A: | Least Square |
| Option B: | Rayliegh-Ritz |
| Option C: | Collocation |
| Option D: |  |

