These are sample MCQs to indicate pattern, may or may not appear in examination

University of Mumbai Online Examination 2020

Program: BE in Automobile Engineering

Curriculum Scheme: Revised 2016
Examination: Third Year Semester VI
Course Code: AEC603 and Course Name: Finite Element Analysis
Time: 1 hour
Max. Marks: 50

Note to the students: - All the Questions are compulsory and carry equal marks.

Q1.	Finite Element Method gives
Option A:	approximate and exact solutions
Option B:	approximate numerical solutions
Option C:	exact solutions
Option D:	real solution
Q2.	In which method, weighting function is considered as unity
Option A:	least square
Option B:	galerkin
Option C:	petro galerkin
Option D:	sub domain
Q3.	In approximate solution Degree of polynomial should be
Option A:	Equal to order of D.E.
Option B:	One more than order of D.E.
Option C:	One less than order of D.E.
Option D:	zero
Q4.	For approximate solution of equation dy/dx $=x$, the expression for residue R is
Option A:	dy/dx $+x$
Option B:	dy/dx $-x$
Option C:	dy/dx x
Option D:	dy/dx / x
Q5.	In weak form, what is weakened
Option A:	degree
Option B:	order
Option C:	degree \& order
Option D:	range
Q6.	Increasing the no. of nodes of an element

Option A:	decrease the order of element
Option B:	increase the order of element
Option C:	keeps the order same
Option D:	has no relation with the order of element
Q7.	Process of numbering the node is called as
Option A:	Topology
Option B:	Analogy
Option C:	Tribology
Option D:	Geology
Q8.	Number of displacement polynomials used for an element depends on
Option A:	Nature of Element
Option B:	Type of Element
Option C:	Degree of freedom
Option D:	Nodes
Q9.	Each node of a 1-D beam element has how many degrees of freedom?
Option A:	1
Option B:	2
Option C:	3
Option D:	4
Q10.	1 D element with 4 nodes is a
Option A:	constant element
Option B:	linear element
Option C:	quadratic element
Option D:	cubic element
Q11.	The matrix equation for structural analysis is
Option A:	$[\mathrm{K}][\mathrm{F}]=\{\mathrm{U}\}$
Option B:	$\{\mathrm{U}\}[\mathrm{K}]=[\mathrm{F}]$
Option C:	$[\mathrm{K}]\{\mathrm{U}\}=[\mathrm{F}]$
Option D:	$[\mathrm{F}]\{\mathrm{U}\}=[\mathrm{K}]$
Q12.	The size of the global stiffness matrix for a truss assembly with 2 links will be Option A: 22×2
Option B:	3×3
Option C:	4×4
Option D:	6×6

Q13.	For the step bar as shown, if the deformation at the point A is 0.01 mm , the magnitude of stress in element with larger cross section area with $\mathrm{E}=$ 200 GPa will be Option A:
Option B:	1.34 MPa
Option C:	6.67 MPa
Option D:	0.67 MPa
Q14.	In a triangular element the DOF at each node is
Option A:	0
Option B:	1
Option C:	2
Option D:	3
Q15.	The no. of nodes in a LST element is
Option A:	2
Option B:	3
Option C:	4
Option D:	6
Q16.	Truncation error comes due to
Option A:	numerical errors
Option B:	discretization error
Option C:	formulation errors
Option D:	convergence error
Q17.	
Option A:	Which of the following is not a convergence criteria
Option B:	polynomial should be complete polynomial
Option C:	approximate solution should be interpolation function of primary variable at nodes
Option D:	h-method should be used compulsorily

Q18.	For the given quadrilateral element, both the local coordinates at the point P is 0.57735 . The Cartesian coordinates at point P will be

Option A:	$\frac{\delta u}{\delta y}$
Option B:	$\frac{\delta}{\delta k}$
Option C:	$\frac{\delta u}{\delta y}+\frac{\delta v}{\delta x}$
Option D:	$\frac{\delta u}{\delta x}+\frac{\delta v}{\delta y}$
Q23.	Which analysis deals with determination of natural frequency?
Option A:	Static analysis
Option B:	Structural analysis
Option C:	Thermal analysis
Option D:	Modal analysis
Q24.	The Governing equation for free transverse vibration of beam is given by
Option A:	$\frac{1}{\text { EI }} \frac{\partial^{4} v}{\partial x^{4}}+\frac{1}{\rho A} \frac{\partial^{2} v}{\partial t^{2}}=0$
Option B:	EI $\frac{\partial^{4} \mathrm{v}}{\partial \mathrm{x}^{4}}+\rho \mathrm{A} \frac{\partial^{2} \mathrm{v}}{\partial t^{2}}=0$
Option C:	EI $\frac{\partial^{4} \mathrm{v}}{\partial \mathrm{x}^{4}}+\frac{1}{\rho \mathrm{~A}} \frac{\partial^{2} \mathrm{v}}{\partial \mathrm{t}^{2}}=0$
Option D:	$\frac{1}{\mathrm{EI}} \frac{\partial^{4} v}{\partial \mathrm{x}^{4}}+\rho \mathrm{A} \frac{\partial^{2} v}{\partial \mathrm{t}^{2}}=0$
Q25.	Natural Frequency of axial vibration of bar ($\mathrm{E}=200 \mathrm{GPa}, \rho=7800 \mathrm{~kg} / \mathrm{m}^{3}$, $\mathrm{L}=1 \mathrm{~m}$) fixed at one end using lumped mass matrices using one linear element is given by
Option A:	7161.51 rad
Option B:	8159.94 rad
Option C:	7751.26 rad
Option D:	8770.58 rad

