These are sample MCQs to indicate pattern, may or may not appear in examination

University of Mumbai Online Examination 2020

Program: TE Electronics and Telecommunication Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester V

Course Code: ECC 504 and Course Name: Discrete Time Signal Processing

Time: 1 hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	If DFT of $x(n)$ is $X(K)$ then DFT of $x(n-N/2)$ as per half period shift property of DFT is
Option A:	Х(К)
Option B:	-X(K)
Option C:	(-1)^k. X(K)
Option D:	2X(K)
Q2.	The circular convolution of two sequences in time domain is equivalent to
Option A:	Multiplication of DFTs of two sequences
Option B:	Summation of DFTs of two sequences
Option C:	Difference of DFTs of two sequences
Option D:	Square of multiplication of DFTs of two sequences
Q3.	If sequence is imaginary and odd the DFT is
Option A:	Real and Even
Option B:	Imaginary and odd
Option C:	Imaginary and even
Option D:	Real and Odd
Q4.	If $X(k)$ is the N-point DFT of a sequence $x(n)$, then what is the DFT of $x^*(n)$? (note that
	X*(k) is complex conjugate of X(K))
Option A:	X(N-k)
Option B:	X*(k)
Option C:	X*(N-k)
Option D:	X(k)
Q5.	In DIT FFT algorithm input is arranged in
Option A:	Normal order
Option B:	Reverse order
Option C:	Bit reversed order
Option D:	Either A or B

Option B: Option C:	Et-Nt N-Et
Option A:	Nt-N
Q12.	If N is Unquantised number and Nt is number obtained by truncation of Error is, Et =
Option D:	Present Input sample, Past input samples and output samples
Option C:	Present input samples only
Option B:	Present input samples and past output samples only
Option A:	Present input samples and past Inputs samples only
Q11.	In IIR digital filter the present output depends on
Option D:	Window method
Option C:	Approximation of Derivatives
Option B:	Bilinear Transformation
Option A:	Impulse Invariant Method
Q10.	Which of the following method is not used for designing IIR Filter
Option D:	Approximation of Derivatives
Option C:	Taking backward difference for the derivative
Option B:	Sampling the impulse response of an equivalent analog filter
Option A:	one to one mapping from s-domain to z-domain
Q9.	Bilinear Transformation make use of
Option D:	Frequency Sampling Method
Option C:	Kaiser Window
Option B:	Window method
Option A:	Impulse Invarience Method
Q8.	The methods used for designing IIR filters is
•	
Option D:	Ω=ω
Option C:	$\Omega = T/\omega$
Option B:	$\Omega = \omega/T$
Option A:	invariant method? Ω=ωT
Q7.	What is the relation between analog frequency(Ω) and digital frequency(ω) in impulse
Option D:	Ν
Option C:	N log(N)
Option B:	(N/2)log(N*2)
Option A:	(N/2)log(N)
Q6.	is? (Note the base of all Log is 2)

Option C:	700 Hz to 1200 Hz
Option D:	1200 Hz to 1700 Hz
Q21.	In DTMF 770Hz & 1633Hz Frequency combination related to
Option A:	Α
Option B:	В
Option C:	С
Option D:	D
Q22.	In FIR filter design using Window method, which among the following parameters is/are separately controlled using Kaiser window?
Option A:	Order of filter (M)
Option A: Option B:	Shape of Window function
Option C:	Order of the filter (M) as well as Shape of window function
Option D:	Gain in passband and attenuation in stop band of the filter
Option D.	
Q23.	Which among the following represent/s the characteristic/s of an ideal filter?
Option A:	Infinite gain in passband
Option B:	Zero attenuation in stop band
Option C:	Constant gain in passband and zero gain in stopband
Option D:	Passes all frequencies at the input to output without attenuation
Q24.	The principle of Frequency Sampling method of FIR filter design is :
Option A:	DTFT H(ω) is used to find impulse response h(n) of the filter
Option B:	DFT samples H(k) are used to find impulse response h(n) of the filter
Option C:	System function H(z) is used to find impulse response h(n) of the filter
Option D:	Truncation of Fourier series coefficients is used to find impulse response h(n) of the filter
Q25.	Impulse response of linear phase FIR filter is h(n) ={ 1,2,3,2,1}. This filter is of:
Option A:	Туре-І
Option B:	Туре-ІІ
Option C:	Туре-III
Option D:	Type-IV