These are sample MCQs to indicate pattern, may or may not appear in examination
University of Mumbai
Online Examination 2020
Program: TE Electronics and Telecommunication Engineering
Curriculum Scheme: Revised 2016
Examination: Third Year Semester V
Course Code: ECC 504 and Course Name: Discrete Time Signal Processing
Time: 1 hour
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	If DFT of $\mathrm{x}(\mathrm{n})$ is $\mathrm{X}(\mathrm{K})$ then DFT of $\mathrm{x}(\mathrm{n}-\mathrm{N} / 2)$ as per half period shift property of DFT is
Option A:	$\mathrm{X}(\mathrm{K})$
Option B:	$-\mathrm{X}(\mathrm{K})$
Option C:	$(-1)^{\wedge} \mathrm{k} . \mathrm{X}(\mathrm{K})$
Option D:	$2 \mathrm{X}(\mathrm{K})$
Q2.	The circular convolution of two sequences in time domain is equivalent to
Option A:	Multiplication of DFTs of two sequences
Option B:	Summation of DFTs of two sequences
Option C:	Difference of DFTs of two sequences
Option D:	Square of multiplication of DFTs of two sequences
Q3.	If sequence is imaginary and odd the DFT is
Option A:	Real and Even
Option B:	Imaginary and odd
Option C:	Imaginary and even
Option D:	Real and Odd
Q4.	If $\mathrm{X}(\mathrm{k})$ is the N -point DFT of a sequence $\mathrm{x}(\mathrm{n})$, then what is the DFT of $\mathrm{x} *(\mathrm{n})$? (note that $\mathrm{X}^{*}(\mathrm{k})$ is complex conjugate of $\left.\mathrm{X}(\mathrm{K})\right)$ Option A: $\mathrm{X}(\mathrm{N}-\mathrm{k})$ Option B: $\mathrm{X}^{*}(\mathrm{k})$ Option C: $\mathrm{X}^{*}(\mathrm{~N}-\mathrm{k})$ Option D: $\mathrm{X}(\mathrm{k})$ Q5. Option A: Option B: Option C: In DIT FFT algorithm input is arranged in Reverse order Bit reversed order

Q6.	The total number of complex additions required to compute N point DFT by radix-2 FFT is? (Note the base of all Log is 2)
Option A:	$(\mathrm{N} / 2) \log (\mathrm{N})$
Option B:	$(\mathrm{N} / 2) \log \left(\mathrm{N}^{*} 2\right)$
Option C:	N log(N)
Option D:	N
Q7.	What is the relation between analog frequency (Ω) and digital frequency (ω) in impulse invariant method?
Option A:	$\Omega=\omega \mathrm{T}$
Option B:	$\Omega=\omega / \mathrm{T}$
Option C:	$\Omega=\mathrm{T} / \omega$
Option D:	$\Omega=\omega$
Q8.	The methods used for designing IIR filters is
Option A:	Impulse Invarience Method
Option B:	Window method
Option C:	Kaiser Window
Option D:	Frequency Sampling Method
Q9.	Bilinear Transformation make use of..............
Option A:	one to one mapping from s-domain to z-domain
Option B:	Sampling the impulse response of an equivalent analog filter
Option C:	Taking backward difference for the derivative
Option D:	Approximation of Derivatives
Q10.	Which of the following method is not used for designing IIR Filter
Option A:	Impulse Invariant Method
Option B:	Bilinear Transformation
Option C:	Approximation of Derivatives
Option D:	Window method
Q11.	In IlR digital filter the present output depends on
Option A:	Present input samples and past Inputs samples only
Option B:	Present input samples and past output samples only
Option C:	Present input samples only
Option D:	Present Input sample, Past input samples and output samples
Q12.	If N is Unquantised number and Nt is number obtained by truncation of Error is, Et =
Option A:	Nt-N
Option B:	Et-Nt
Option C:	N-Et
Option D:	N -Nt
Q13.	What is NTF

Option A:	Negative Transfer Function
Option B:	Noise Truncation Function
Option C:	Negative Truncation Function
Option D:	Noise Transfer Function
Q14.	Overflow limit cycle in output are oscillation due to which of following
Option A:	Overflow of Division
Option B:	Overflow of Subtraction
Option C:	Overflow of Multiplication
Option D:	Overflow of Addition
Q15.	Which type of architecture uses different storage space for program code and the data?
Option A:	Von Neumann architecture
Option B:	Harvard architecture
Option C:	Fragmented architecture
Option D:	Split cell architecture
Q16.	In DAGs, which register/s provide/s increment or step size for index register especially during the register move?
Option A:	Index Register
Option B:	Length \& Base Register
Option C:	Modify Register
Option D:	Only Base Register
Q17.	In TMS 320 C6x processor architecture, which functional unit is adopted for transferring the data from register to and from control register?
Option A:	L2
Option B:	M2
Option C:	S2
Option D:	D2
Q18.	Which units are generally involved in Multiply and Accumulate (MAC)?
Option A:	Only Subtractor
Option B:	Multiplier
Option C:	Accumulator
Option D:	Both B \& C
Q19.	Which of the following block is not required in digital processing of a RADAR signal?
Option A:	Typical DTMF frequencies range approximately from.
Option B:	700Hz to 1700 Hz
Option B:	A/D converter
Option C:	DSP converter
Option D:	Both A \& B

Option C:	700 Hz to 1200 Hz
Option D:	1200 Hz to 1700 Hz
Q21.	In DTMF 770 Hz \& 1633Hz Frequency combination related to
Option A:	A
Option B:	B
Option C:	C
Option D:	D
Q22.	In FIR filter design using Window method, which among the following parameters is/are separately controlled using Kaiser window?
Option A:	Order of filter (M)
Option B:	Shape of Window function
Option C:	Order of the filter (M) as well as Shape of window function
Option D:	Gain in passband and attenuation in stop band of the filter
Q23.	Which among the following represent/s the characteristic/s of an ideal filter?
Option A:	Infinite gain in passband
Option B:	Zero attenuation in stop band
Option C:	Constant gain in passband and zero gain in stopband
Option D:	Passes all frequencies at the input to output without attenuation
Q24.	The principle of Frequency Sampling method of fIR filter design is :
Option A:	DTFT H(w) is used to find impulse response h(n) of the filter
Option B:	DFT samples H(k) are used to find impulse response h(n) of the filter
Option C:	System function H(z) is used to find impulse response h(n) of the filter
Option D:	Truncation of Fourier series coefficients is used to find impulse response $\mathrm{h}(\mathrm{n})$ of the filter
Q25.	Impulse response of linear phase FIR filter is h(n) =\{ 1,2,3,2,1\}. This filter is of:
Option A:	Type-I
Option B:	Type-II
Option C:	Type-III
Option D:	Type-IV

