These are sample MCQs to indicate pattern, may or may not appear in examination

University of Mumbai

Examination 2020

Program: BE Mechanical Engineering
Curriculum Scheme: Revised 2016
Examination: Third Year Semester V
Course Code: MEC503 and Course Name: Heat Transfer
Time: 1hour
Max. Marks: 50
Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Use of external force for flow is done in
Option A:	Free convection
Option B:	Free conduction
Option C:	Forced Radiation
Option D:	Forced Convection
Q2.	Emissivity of Black Body is
Option A:	0.5
Option B:	2
Option C:	1
Option D:	0
Q3.	Transmissivity of Opaque body is
Option A:	2
Option B:	1
Option C:	0.9
Option D:	0
Q4.	The value of critical radius in case of a cylindrical hollow object is
Option A:	$2 \mathrm{k} / \mathrm{h}$
Option B:	$2 \mathrm{~h} / \mathrm{k}$
Option C:	k/h
Option D:	h/k
Q5.	For insulation to be properly effective in restricting heat transmission, the pipe radius r0 will be
Option A:	Less than critical radius
Option B:	Greater than critical radius
Option C:	Greater than or equal to critical radius
Option D:	Equal to critical radius
Q6.	Chose the correct one with respect to the critical radius of insulation

Option A:	There is more heat loss i.e. conductive
Option B:	There occurs a decrease in heat flux
Option C:	Heat loss increases with addition of insulation
Option D:	Heat loss decreases with addition of insulation
Q7.	Heat is lost at a rate of 275 W per sq. m area of a $15-\mathrm{cm}$ thick wall with a thermal conductivity of $\mathrm{k} 51.1 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. The temperature drop across the wall is
Option A:	37.5 degree Celsius
Option B:	27.5 degree Celsius
Option C:	16 degree Celsius
Option D:	8 degree Celsius
Q8.	In the lumped system parameter model, the variation of temperature with time is
Option A:	Linear
Option B:	Exponential
Option C:	Sinusoidal
Option D:	Cubic
Q9.	Which of the following dimensionless number gives an indication of the ratio of internal (conduction) resistance to the surface (convective) resistance?
Option A:	Biot number
Option B:	Fourier number
Option C:	Stanton number
Option D:	Nusselt number
Q10.	Lumped parameter analysis for transient heat conduction is essentially valid for
Option A:	$\mathrm{Bi}<0.1$
Option B:	$1<\mathrm{Bi}<10$
Option C:	$0.1<\mathrm{B}_{1}<0.5$
Option D:	It tends to infinity
Q11.	In the non-dimensional Biot number, the characteristics length is the ratio of
Option A:	Perimeter to surface area of solid
Option B:	Surface area to perimeter of solid
Option C:	Surface area to volume of solid
Option D:	Volume of solid to its surface area
Q12.	Peclet number (Pe) is given by
Option A:	$\mathrm{Pe}=\mathrm{Re} . \mathrm{Pr}$
Option B:	$\mathrm{Pe}=\mathrm{Re} / \mathrm{Pr}$
Option C:	$\mathrm{Pe}=\mathrm{Pr} / \mathrm{Re}(\mathrm{D})$
Option D:	$\mathrm{Pe}=\mathrm{Nu} \cdot \mathrm{Re}$
Q13.	Heat transfer co-efficient equation for forced convection, $\mathrm{Nu}=0.023 \mathrm{Re} 0.8 . \operatorname{Pr}$ n, is not valid, if the value of

Option A:	$\mathrm{n}=0.4$ is used for heating
Option B:	$\mathrm{n}=0.3$ is used for cooling
Option C:	Reynolds number for the flow involved is > 10000
Option D:	Reynolds number for the flow involved is < 2100
Q14.	Which of the following is directly concerned with the convection heat transfer?
Option A:	Strouhal number
Option B:	Sherwood number
Option C:	Euler number
Option D:	Grashoff number
Q15.	For a laminar flow of fluid in a circular tube, 'h1' is the convective heat transfer co-efficient at velocity 'V1'. If the velocity is reduced by half and assuming the fluid properties are constant, the new convective heat transfer co-efficient is
Option A:	1.26 h1
Option B:	0.794 h1
Option C:	0.574 h1
Option D:	1.741 h1
Q16.	Which of the following is an example of lump system analysis?
Option A:	Heating or cooling of fine thermocouple wire due to change in ambient temperature
Option B:	Heating of an ingot in an furnace
Option C:	Cooling of bars
Option D:	Cooling of metal billets in steel works
Q17.	Pick out the wrong statement.
Option A:	The emissivity of a surface decreases, if it gets corroded by atmospheric environment
Option B:	The emissivity of a surface increases with increase in surface roughness
Option C:	The emissivity of a polished surface is quite low
Option D:	The emissivity of a non-metallic surface decreases with increase in the temperature
Option C:	Grey
Q18.	The absorptivity of a body is equal to its emissivity
Option A:	At a particular temperature
Option B:	For circular bodies
Option C:	For smooth surfaces
Option D:	Under thermal equilibrium
O19.	Stefan-Boltzmann law applies to
Option B:	Black
	White

Q20.	The rate of energy radiated per unit area of the surface per unit wavelength is known as
Option A:	Spectral emissive power
Option B:	Emissive power
Option C:	Intensity of radiation
Option D:	Radiosity
Q21.	For the same inlet and exit temperatures of two fluids, the LMTD for counterflow is always
Option A:	smaller than LMTD for parallel flow
Option B:	greater than LMTD for parallel flow
Option C:	same as LMTD for parallel flow
Option D:	unpredictable
Q22.	In heat exchangers, the value of logarithmic mean temperature difference should be
Option A:	maximum
Option B:	minimum
Option C:	constant
Option D:	zero
Q23.	A heat pipe functions as
Option A:	Medium for converting thermal energy to electrical energy
Option B:	Heat sink for electronic products
Option C:	Transport thermal energy from a hot location to a cooler location
Option D:	Transport water from a hot location to a cooler location
Q24.	Power rating of a heat pipe
Option A:	Increases with length
Option B:	Decreases with length
Option C:	Is independent of length
Option D:	Effect of length depends on fluid used
	A gold ring (k = 65 W/m K) of length 15 cm is exposed to a surface where $\mathrm{h} \mathrm{=}$ 11.5 W per sq. m pr K. Find the value of Biot number is
Q25.	Option A:
Option B:	0.0265
Option C:	0.265
Option D:	0.652

