These are sample MCQs to indicate pattern, may or may not appear in examination

University of Mumbai Online Examination 2020

TE Automobile Class: TE (Automobile) Sem V Rev 2016 Course Code and Name: (AEC-503) Heat Transfer

Q NO	QUESTION	OPTIONS			
		Α	В	С	D
			heat flow	The thermal	Logarithmic
1		The heat transfer	through a body	conductivity of	mean temperature
		in liquid and gases	is dependent	solid metals	difference is not
		takes place	upon the	increases with	equal to the
		according to	material of the	rise in	arithmetic mean
	Which of the following statement is wrong?	convection.	body.	temperature,	temperature
2		Zeroth law of	thermodynami	Second law of	
	The heat transfer takes place according to	thermodynamics	cs	thermodynamics	Kirchhoff's law
					decrease
3	Thermal conductivity of water with rise in				depending upon
	temperature.	Remains Same	Decreases	Increases	temperature
4	The transfer of heat from one body to another takes place				
	only when there is a difference between the			Volume	Density
	bodies.	Temperature	Pressure		
			Two	Three	Regular surfaces
5			dimensional	dimensional	having non-
		One dimensional	cases only	cases only	uniform
	Fourier's law of heat conduction is valid for	cases only			temperature
6	Bad conductors are also called	convectors	insulators	radiant	termaids
	Metals are good conductors of heat because	Their atoms	Their atoms	They contain	They have high
7		collide frequently	are relatively	free electrons	density
			far apart		

8	Heat transfer from higher temperature to low temperature	Fourier law	First law of	Second law of	Zeroth law of
	takes place according to		thermodynami	thermodynamics	thermodynamics
9	Calculate the rate of heat transfer per unit area through a	$1.466 \times 10^{6} \text{ W/m}^{2}$	4.466×10^{6}	3.466×10^{6}	2.466×10^{6}
	copper plate 45 mm thick, whose one face is maintained at		W/m^2	W/m^2	W/m^2
	350^{0} C & the other face at 50^{0} C. Take thermal conductivity		vv / III	vv / III	· · · / · · · ·
	of copper as 370 W/m ⁰ c.				
10	An engine is fitted with pin fins having thermal conductivity k = 200 W/mK. The diameter and length of the fin is 2 cm and 50 cm	456.5 ° C	85.7 ⁰ C	700.1 ⁰ C	185.67 ⁰ C
	respectively. Calculate the temperature at 10 cm from the fin base				
	if fine base temperature is 500 °C and fin is in contact with				
	air at 50 °C. Take h = 12 W/m ² K Consider that the fin is infinitely long				
11	What is the value of characteristics length for cube of Side a	a/8	a/2	a/4	a/6
12	A gold ring (k = 65 W/m K) measuring 15 X10 X60 cm is exposed				
	to a surface where $h = 11.5 \text{ W/m2}$ K. Find the value of biot	6.54	0.78	1.24	0.48
	number A heating unit is made in the form of a vertical tube of 50 mm				
	outside diameter and 1.2 m height. The tube is fitted with 20 steel				
	fins of rectangular section with height 40 mm and thickness 2.5				
	mm. The temperature at the base of fin is 75 degree Celsius, the				
13	surrounding air temperature is 20 degree Celsius and the heat	98.44 W	88.44 W	78.44 W	68.44 W
	transfer coefficient between the fin as well as the tube surface and				
	the surrounding air is 9.5 W/m2 K. If thermal conductivity of the				
	fin material is 55 W/m K, find the amount of heat transferred from				
14	Heat transfer from solid to liquid in motion is called	conduction	convection	radiation	cranking
15	which number is product of Grashoff number and Prandtl	•onuu•uron	stanton	Rayleigh number	reynolds number
	number	Peclet number	number		
16	The ratio of dynamic viscosity to density is?	KIIICIIICUC	kinematics	dynamics	kinetic viscosity
17	The axial distance covered by the fluid from the entrance			developing length	thermal length
	upto fullydeveloped velocity profile is called ?	Entry length	exit length		
18	Which one of the following modes of heat transfer would	Constitut	Contration	Radiation	Conduction and
	take place	Convection	Conduction		convection
19	What is the basic equation of thermal radiation from	Stefan-Boltzmann	Planck's	Wien's equation	Rayleigh-Jeans
	which all other equations of radiation can be derived?	equation	equation		formula

20	Fraction of radiative energy leaving one surface that strikes the other surface is called	Radiative flux	Emissive power of the first surface	View factor	Re-radiation flux
21	In radiative heat transfer, a gray surface is one	Which appears gray to the eye	Whose emissivity is	Which has reflectivity equal	Which appears equally bright
22	Maximum water velocity in tubes of a 1-2 shell and tube heat exchanger may be around	1	10	20	30
23	In case of parallel flow heat exchanger, the lowest temperature theoretically attainable by the hot fluid is the outlet temperature of the cold fluid.	equal to	more than	less than	either less or more than
24	For a multipass shell and tube heat exchanger, the LMTD correction factor is always	1	greater than 1	less than 1	between 1 and 2
25	In a shell and tube heat exchanger, putting a longitudinal baffle across the shell, forces the shell side fluid to pass through the heat exchanger.	once	twice	thrice	fourth