These are sample MCQs to indicate pattern, may or may not appeared in examination

University of Mumbai

Examination 2020

Program: BE Electronics and Telecommunication Engineering Curriculum Scheme: Revised 2012 Examination: Third Year Semester V Course Code: ETC 502 and Course Name: Analog Communication Max. Marks: 50

Time: 1-hour

Note to the students: - All the Questions are compulsory and carry equal marks.

Q1.	Noise voltage V_n and absolute temperature T are related as
Option A:	$Vn = 1/\sqrt{4RKTB}$
Option B:	$Vn = \sqrt{(4RK)}/(TB)$
Option C:	$Vn = \sqrt{4RKTB}$
Option D:	$Vn = \sqrt{(4KTB)/R}$

Q2.	Signal-to-Noise ratio is calculated as:
Option A:	signal voltage divided by noise voltage
Option B:	signal power divided by noise power
Option C:	first add the signal power to the noise power, then divide by noise power
Option D:	signal power multiplied by noise power

Q3.	A modulation index of 0.5 would be same as
Option A:	0.5 of Modulation Depth
Option B:	1/2% of Modulation Depth
Option C:	5% of Modulation Depth
Option D:	50% of Modulation Depth

Q4.	For low level modulation, amplifier used is
Option A:	Class A
Option B:	Class C
Option C:	Class A & C
Option D:	Class B

	What happens when the amplitude of the modulating signal is greater than
Q5.	the amplitude of the carrier?
Option A:	Decay
Option B:	Distortion
Option C:	Amplification
Option D:	Attenuation

Q6.	Which of the following is an advantage of SSB over DSB?
Option A:	No change in spectrum space
Option B:	Reduce in spectrum space
Option C:	Carrier is suppressed
Option D:	Power is not wasted on the carrier

Q7.	Which of the following frequency is not transmitted in AM transmission?
Option A:	Upper side band frequency
Option B:	Carrier frequency
Option C:	Lower side band frequency
Option D:	Audio frequency

Q8.	Square Law modulators
Option A:	used for angle modulation
Option B:	have linear current-voltage characteristics
Option C:	have nonlinear current-voltage characteristics as well as used for
	Amplitude Modulation
Option D:	used for frequency modulation

Q9.	What is the main function of a balanced modulator?
Option A:	to limit the noise picked by a receiver
Option B:	to produce balanced modulation of a carrier wave
Option C:	to suppress carrier signal
Option D:	to produce 100% modulation

	Frequency modulation index defines the relationship between the
Q10.	and bandwidth of transmitted signal.
Option A:	Frequency of message signal
Option B:	Amplitude of message signal
Option C:	Amplitude of carrier signal
Option D:	Frequency of carrier signal

	With change in modulating frequency (f_m), the modulation index m_p of a
Q11.	phase modulated signal will
Option A:	increase
Option B:	decrease
Option C:	remain constant
Option D:	proportional

Q12.	Pre emphasis is done
Option A:	Before modulation
Option B:	Before transmission
Option C:	Before detection at receiver

|--|

Q13.	The modulation index of FM is given by
Option A:	μ = frequency deviation / modulating frequency
Option B:	μ = modulating frequency / frequency deviation
Option C:	μ = modulating frequency / carrier frequency
Option D:	μ = carrier frequency / modulating frequency

	Calculate the dissipation in power across 50Ω resistor for the FM
Q14.	signal v(t)= $40 \cos(6600t + 10\sin 2100t)$
Option A:	20W
Option B:	10W
Option C:	8W
Option D:	5W

	In a superheterodyne receiver, the IF is 455 kHz. If it is tuned to 1400 kHz,
Q15.	what is image frequency?
Option A:	1855 kHz
Option B:	2310 kHz
Option C:	945 kHz
Option D:	910 kHz

	An Aliasing error occurs when the Nyquist rate is times the highest
Q16.	frequency component present input analog information signal
Option A:	1.2
Option B:	2
Option C:	2.5
Option D:	3

	A total of n message each band limited to B, are time division multiplexed using PAM. The minimum bandwidth of
Q17.	the multiplexed will be
Option A:	В
Option B:	B/2
Option C:	n B
Option D:	2nB

	A distorted signal of frequency fm is recovered from a sampled signal if
Q18.	the sampling frequency fs is
Option A:	fs > 2fm
Option B:	fs < 2fm
Option C:	fs = 2fm
Option D:	$fs \ge 2fm$

	It is the first stage of the receiver and is therefore often called the receiver
Q19.	front end.
Option A:	mixer
Option B:	RF section
Option C:	local oscillator
Option D:	IF stage

	To provide two or more voice circuits with the same carrier, it is necessary
Q20.	to use
Option A:	ISB
Option B:	carrier reinsertion
Option C:	SSB with pilot carrier
Option D:	VSB

	If a radio receiver amplifies all the signal frequencies equally well, it is
Q21.	said to have high
Option A:	Sensitivity
Option B:	Selectivity
Option C:	Distortion
Option D:	Fidelity

Q22.	In a TRF radio receiver, the RF and detection stages are tuned to
Option A:	Radio frequency
Option B:	IF
Option C:	Audio frequency
Option D:	Local oscillator frequency

	The digital modulation technique in which the step size is varied according
Q23.	to the variation in the slope of the input is called
Option A:	Delta modulation
Option B:	PCM
Option C:	Adaptive delta modulation
Option D:	PAM

Q24.	In delta modulation Granular noise occurs when
Option A:	Step size is too small
Option B:	Step size is too large
Option C:	There is interference from the adjacent channel
Option D:	Bandwidth is too large

Q25.	To separate channels in an FDM receiver, it is necessary to use
Option A:	AND gates

Option B:	differentiation
Option C:	bandpass filters
Option D:	integration