University of Mumbai
Online Examination 2020
Program: BE Computer Engineering
Curriculum Scheme : Revised 2016
Examination: Final Year Semester : VII
Course Code:CSC703 and Course Name: Artificial Intelligence and Soft Computing

Time: 1hour	Max. Marks: 50
	Note to the students:- All the Questions are compulsory and carry equal marks .
Q1.	is the art and science of developing intelligent machines.
Option A:	Machine Intelligence
Option B:	Artificial Intelligence
Option C:	Hard Computing
Option D:	Soft Computing
Q2.	What is the other name of informed search strategy?
Option A:	Simple search
Option B:	Heuristic search
Option C:	Online search
Option D:	None of These
Q3.	What is the heuristic function of greedy best-first search?
Option A:	$\mathrm{f}(\mathrm{n}) \mathrm{l}=\mathrm{h}(\mathrm{n})$
Option B:	$\mathrm{f}(\mathrm{n})<\mathrm{h}(\mathrm{n})$
Option C:	$f(\mathrm{n})=\mathrm{h}(\mathrm{n})$
Option D:	$f(n)>h(n)$
Q4.	Which search is complete and optimal when $\mathrm{h}(\mathrm{n})$ is consistent?
Option A:	Best-first search
Option B:	Depth-first search
Option C:	Both Best-first \& Depth-first search

Option D:	It can derive any sentence that is an entailed version \& It is truth preserving
Q10.	Which of the following is not the style of inference?
Option A:	Forward Chaining
Option B:	Backward Chaining
Option C:	Resolution Refutation
Option D:	Modus Ponen
Q11.	Which among the following could the Existential instantiation of $\exists \mathrm{x}$ Crown(x)^ OnHead(x , Johnny) ?
Option A:	Crown(John) ^ OnHead(John, Jonny)
Option B:	Crown(y)^ OnHead($\mathrm{y}, \mathrm{y}, \mathrm{x}$)
Option C:	Crown(x) ^ OnHead(x , Jonny)
Option D:	None of these.
Q12.	What is Fuzzy Logic?
Option A:	a method of reasoning that resembles human reasoning
Option B:	a method of question that resembles human answer
Option C:	method of giving answer that resembles human answer.
Option D:	a method of giving answer that resembles machine answer.
Q13.	The height $\mathrm{h}(\mathrm{A})$ of a fuzzy set A is defined as $\mathrm{h}(\mathrm{A})=\sup \mathrm{A}(\mathrm{x})$
Option A:	$\mathrm{h}(\mathrm{A})=0$
Option B:	$\mathrm{h}(\mathrm{A})<0$
Option C:	$h(A)=1$
Option D:	$\mathrm{h}(\mathrm{A})<1$
Q14.	What are the following sequence of steps taken in designing a fuzzy logic machine ?
Option A:	Fuzzification \rightarrow Rule evaluation \rightarrow Defuzzification

Option B:	Fuzzification \rightarrow Defuzzification \rightarrow Rule evaluation
Option C:	Rule evaluation \rightarrow Fuzzification \rightarrow Defuzzification
Option D:	Rule evaluation \rightarrow Defuzzification \rightarrow Fuzzification
Q15.	If A and B are two fuzzy sets with membership functions $? A(x)=\{0.6,0.5,0.1,0.7,0.8\} ? B(x)=\{0.9,0.2,0.6$, $0.8,0.5\}$ Then the value of ? Complement A ? $B(x)$ will be
Option A:	$\{0.9,0.5,0.6,0.8,0.8\}$
Option B:	$\{0.6,0.2,0.1,0.7,0.5\}$
Option C:	$\{0.1,0.5,0.4,0.2,0.2\}$
Option D:	$\{0.1,0.5,0.4,0.2,0.3\}$
Q16.	Consider a fuzzy set old as defined below old=\{(20,0),(30,0.2),(40,0.4),(50,0.6),(60,0.8),(70,1),(80,1)\}. Then the alpha-cut for alpha= 0.4 for the set old will be
Option A:	\{(40,0.3) $\}$
Option B:	\{50,60,70,80\}
Option C:	\{(20,0.1),(30,0.2)\}
Option D:	\{(20,0),(30,0),(40,1),(50,1),(60,1),(70,1),(80,1)\}
Q17.	The height $h(A)$ of a fuzzy set A is defined as $h(A)=\sup A(x)$ where x belongs to A. Then the fuzzy set A is called normal when
Option A:	$\mathrm{h}(\mathrm{A})=0$
Option B:	$\mathrm{h}(\mathrm{A})<0$
Option C:	$\mathrm{h}(\mathrm{A})=1$
Option D:	$\mathrm{h}(\mathrm{A})<1$
Q18.	which boolean function we can not implement by using McCulloch Pitt neuron model?
Option A:	AND
Option B:	XOR
Option C:	OR

Option D:	NOT
Q19.	Which are the following optimization are derivative based?
Option A:	Random search
Option B:	Down Hill simplex
Option C:	Newton Method
Option D:	Pattern search
Q20.	What is mean by gradient?
Option A:	A gradient measures how much the output of a function changes if you change the inputs a little bit
Option B:	A gradient measures how much the output of a function changes if you increase the inputs a little bit
Option C:	A gradient measures how much the output of a function changes if you decrease the inputs a little bit
Option D:	A gradient measures how much the input of a function changes if you change the output a little bit
Q21.	What is the objective of backpropagation algorithm?
Option A:	to develop learning algorithm for multilayer feedforward neural network
Option B:	to develop learning algorithm for single layer feedforward neural network
Option C:	to develop learning algorithm for multilayer feedforward neural network, so that network can be trained to cap
Option D:	none of these
Q22.	Determine the weights after first step of training for perceptron learning rule of a single neuron network starting with initial weights $w=\left[\begin{array}{ll}0 & 0\end{array}\right]$, inputs as $X 1=\left[\begin{array}{ll}2 & 2\end{array}\right], X 2=\left[\begin{array}{ll}1 & -2\end{array}\right], X 3=\left[\begin{array}{ll}-2 & 2\end{array}\right], X 4=\left[\begin{array}{ll}-1 & 1\end{array}\right]$ and $\mathrm{d} 1=0$, $\mathrm{d} 2=1, \mathrm{~d} 3=0$ and $\mathrm{d} 4=1$. The learning rate $\mathrm{c}=1$. Use Binary bipolar activation function.
Option A:	$\left[\begin{array}{ll}-2 & -2\end{array}\right]$
Option B:	[2 2 2]
Option C:	[2-2]

Option D:	[-2 2 2]
Q23.	Calculate weights after first iteration using delta learning rule for $\lambda=1, \mathrm{c}=0.25$ (learning rate). Train the network using following data pairs- $\mathrm{X} 1=\left[\begin{array}{lll}2 & 0 & -1\end{array}\right], \mathrm{d} 1=-1$ and $\mathrm{X} 2=\left[\begin{array}{lll}1 & -2 & -1\end{array}\right], \mathrm{d} 2=1$. The initial weights are $\mathrm{W} 1=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$.
Option A:	$\left[\begin{array}{llll}0.713 & 0 & 1.1437\end{array}\right]$
Option B:	[0.113 0000.1437$]$
Option C:	[0.213 0000.1437$]$
Option D:	[0.313 0 0 1.1437]
Q24.	In a single perceptron, the updation rule of weight vector is given by
Option A:	$\mathrm{w}(\mathrm{n}+1)=\mathrm{w}(\mathrm{n})+\eta[d(\mathrm{n})-\mathrm{y}(\mathrm{n})]$
Option B:	$\mathrm{w}(\mathrm{n}+1)=\mathrm{w}(\mathrm{n})-\eta[\mathrm{d}(\mathrm{n})-\mathrm{y}(\mathrm{n})]$
Option C:	$\mathrm{w}(\mathrm{n}+1)=\mathrm{w}(\mathrm{n})+\eta[\mathrm{d}(\mathrm{n})-\mathrm{y}(\mathrm{n})]^{*} \mathrm{x}(\mathrm{n})$
Option D:	$\mathrm{w}(\mathrm{n}+1)=\mathrm{w}(\mathrm{n})-\eta[\mathrm{d}(\mathrm{n})-\mathrm{y}(\mathrm{n})]^{*} x(\mathrm{n})$
Q25.	Which of the following are Components of Expert Systems?
Option A:	Knowledge Base
Option B:	Inference Engine
Option C:	User Interface
Option D:	All of the above

