Program: BE Electronics and Telecommunication Engineering
Curriculum Scheme: Revised 2016
Examination: BE SEM VIII R-2016
Course Code:ECC801 and Course Name: RF Design
Time: 1 hour \quad Max. Marks: 50

It is possible to overcome the drawback of m-derived filter by connecting number of sections in addition to prototype \& m-derived sections with terminating One-fourth sections Half sections
Square of three-fourth sections
Full sections
While designing a constant-k high pass filter (T-section), the cut-off frequency fc is determined by

For the m-derived filter, attenuation decreases as
$\omega<\omega_{\infty} \omega<\omega_{\infty} \omega<$
$\omega_{\infty} \omega<\omega_{\infty} \omega$
$<\omega_{\infty} \omega<\omega_{\infty} \omega<\omega_{\infty} \omega<\omega_{\infty} \omega<\omega_{\infty}$
$\omega=\omega_{\infty} \omega=\omega_{\infty} \omega=$
$\omega_{\infty} \omega=\omega_{\infty} \omega$
$=\omega_{\infty} \omega=\omega_{\infty} \omega=\omega_{\infty} \omega=\omega_{\infty} \omega=\omega_{\infty}$
$\omega<\omega_{\mathrm{c}} \omega<\omega_{\mathrm{c}} \omega<$ $\omega_{c} \omega<\omega_{c} \omega$ $<\omega_{\mathrm{c}} \omega<\omega_{\mathrm{c}} \omega<\omega_{\mathrm{c}}$
$\omega>\omega_{\infty} \omega>\omega_{\infty} \omega>$ $\omega_{\infty} \omega>\omega_{\infty} \omega$ $>\omega_{\infty} \omega>\omega_{\infty} \omega>\omega_{\infty} \omega>\omega_{\infty} \omega>\omega_{\infty}$

Image impedance at Port 2 of a two-port network, in terms of ABCD parameters is given by

Q	For a constant k type HPF with T- section, with $\mathrm{L}=3 \mathrm{mH}$ and $\mathrm{C}=2 \mu \mathrm{~F}$, what will be the value of Nominal Characteristic Impedance Ro?
A	3873 Ohm
B	387.3 Ohm
C	3.873 Ohm
D	38.73 Ohm
Q	Which of the following is not true about Image Parameter method?
A	Any arbitrary frequency response can be incorporated into the design
B	The method is relatively simple
C	Method involves the specification of passband and stopband characteristics for a cascade of simple two-port networks
D	Method finds application in solid-state traveling-wave amplifier design
Q	For m-Derived HPF of T-section, series component's value is
A	(m L)/2
B	mL
C	(2C)/m
D	2C m
Q	For m-Derived, when $\omega=\omega \infty$, attenuation becomes
A	Zero
B	Constant
C	Infinite
D	One
Q	In Composite filter, the ___ provides high attenuation further into the stopband
A	constant-k section
B	m-derived section
C	bisected- π section
D	All sections
Q	In a maximally flat low-pass filter design with a cutoff frequency of 2 GHz , impedance of 50 , and at least 15 dB insertion loss at 3 GHz ;Given data- $\mathrm{N}=5, \mathrm{~g} 1=0.618, \mathrm{~g} 2=$ $1.618, \mathrm{~g} 3=2.000, \mathrm{~g} 4=1.618, \mathrm{~g} 5=0.618$. If first element is capacitor, what is its value in pF?
A	0.489
B	0.49
C	0.984
D	0.564
Q	It is desired to design a maximally flat low-pass filter with at least 15 dB attenuation at ω $=1.3 \omega \mathrm{c}$ and -3 dB at its band edge. How many elements will be required for this filter?
A	7
B	5
C	4
D	3
Q	Pick up the CORRECT statement from the following:
A	While transforming lowpass filter to bandpass filter, inductor is replaced by parallel combination of inductor and capacitor.
B	While transforming lowpass filter to bandpass filter, inductor is replaced by series combination of inductor and capacitor.

While transforming lowpass filter to bandpass filter, capacitor is replaced by series combination of inductor and capacitor.
While transforming lowpass filter to bandpass filter, capacitor is replaced by inductor.
filter response has sharpest cut-off but worst group delay characteristics.
Binomial
Chebyshev
Linear-phase
Elliptic
A lumped inductors and capacitors based Butterworth LPF is designed to have a cut-off frequency of 5 GHz and an attenuation of at least 15 dB at 7 GHz with 50 ohm impedance. What will be the order of this LPF?
3
4
5
Binomial filter
Chebyshev filter Type-I
Chebyshev filter Type-II
Elliptic filter
An engineer wants to design a third order Chebyshev BPF with 3 dB passband ripple. The designed filter must meet B.W. requirement of 20% with center frequency of 2.4 GHz . The filter must match with 50 ohm line impedance. What is the approximate value of first series inductor in final BPF circuit?
55.5 nH
80 nH
55.5 pH
80 pH
\qquad is used to convert standard generator and load resistances to practically realizable resistance values.
Richard's transformation
Kuroda's identities
Impedance scaling
normalization
In Richard's transformation, all lines are $\lambda 0 / 8$ in length, commonly known as lines.
redundant
commensurate
matched
equal-length
The \qquad condition, if met then the transistor can be impedance matched for any load.
Conditional stability
Unconditional stability
unstabilty
Infinite input impedance

Q	Stability condition of an amplifier dependent on－－－－－－－－－－－－－－－．
A	
B	
C	$\Gamma^{\text {outrout }}$
D	
Q	If \mid S11 $\mid<1$ and \mid S22 $\mid<1$ the amplifier is ：
A	unconditionally stable
B	potentially unstable
C	unstable
D	conditionally stable
Q	The K value of unilateral transistor（ $\mathrm{S} 12=0$ ）is
A	∞
B	0
C	1
D	5.6
Q	The maximum matching section gain（load GLmax ）in terms of scattering parametrs is given by
A	$\mathrm{G}_{\text {LMAX }}=1 /\left(1-\left\|S_{22}\right\|^{2}\right) \mathrm{G}_{\text {LMAX }}=1 /\left(1-\left\|\mathrm{S}_{22}\right\|^{2}\right) \mathrm{G}_{\text {LMAX }}=1 /\left(1-\left\|S_{22}\right\|^{2}\right) \mathrm{G}_{\text {Lmax }}=1 /\left(1-\left\|S_{22}\right\|^{2}\right) \mathrm{G}_{\text {LMAX }}=1 /\left(1-\mid \mathrm{S}_{22}\right.$
B	$\mathrm{G}_{\text {LMAX }}=1 /\left(1-\left\|\mathrm{S}_{11}\right\|^{2}\right) \mathrm{G}_{\text {LMAX }}=1 /\left(1-\left\|\mathrm{S}_{11}\right\|^{2}\right) \mathrm{G}_{\text {LMAX }}=1 /\left(1-\left\|\mathrm{S}_{11}\right\|^{2}\right) \mathrm{G}_{\text {Lmax }}=1 /\left(1-\left\|\mathrm{S}_{11}\right\|^{2}\right) \mathrm{G}_{\text {LMAX }}=1 /\left(1-\mid \mathrm{S}_{11}\right.$
C	$\mathrm{G}_{\text {LMAX }}=1 /\left(1-\left\|\mathrm{S}_{12}\right\|^{2}\right) \mathrm{G}_{\text {Lmax }}=1 /\left(1-\left\|\mathrm{S}_{12}\right\|^{2}\right) \mathrm{G}_{\text {LMAX }}=1 /\left(1-\left\|\mathrm{S}_{12}\right\|^{2}\right) \mathrm{G}_{\text {Lmax }}=1 /\left(1-\left\|\mathrm{S}_{12}\right\|^{2}\right)^{2} \mathrm{G}_{\text {LMAX }}=1 /\left(1-\mid \mathrm{S}_{12}\right.$
D	$\mathrm{G}_{\text {LMAX }}=1 /\left(1-\left\|S_{21}\right\|^{2}\right) \mathrm{G}_{\text {LMAX }}=1 /\left(1-\left\|S_{21}\right\|^{2}\right) \mathrm{G}_{\text {LMAX }}=1 /\left(1-\left\|S_{21}\right\|^{2}\right) \mathrm{G}_{\text {Lmax }}=1 /\left(1-\left\|S_{21}\right\|^{2}\right) \mathrm{G}_{\text {LMAX }}=1 /\left(1-\mid \mathrm{S}_{21}\right.$
Q	Normalized load Gain Factor is given by
A	
B	
C	
D	
Q	In a Microwave Amplifier Design for Maximum Gain，Maximum power transfer from the transistor to the output matching network will occur when
A	
B	
C	

D	
	impedance mismatch (large $\left\|\mathrm{S}_{11}\right\|$ and $\left\|\mathrm{S}_{22}\right\|$), the resulting frequency response may be \qquad In a
	Maximum Gain Microwave Amplifier Design, since most transistors exhibit a significant impedance mismatch (large $\left\|S_{11}\right\|$ and $\left\|S_{22}\right\|$), the resulting frequency response may be \qquad In a
	Maximum Gain Microwave Amplifier Design, since most transistors exhibit a significant impedance mismatch (large $\left\|\mathrm{S}_{11}\right\|$ and $\left\|\mathrm{S}_{22}\right\|$), the resulting frequency response may be \qquad In a
	Maximum Gain Microwave Amplifier Design, since most transistors exhibit a significant impedance mismatch (large $\left\|\mathrm{S}_{11}\right\|$ and $\left\|\mathrm{S}_{22}\right\|$), the resulting frequency response may be \qquad In a
	Maximum Gain Microwave Amplifier Design, since most transistors exhibit a significant impedance mismatch (large $\left\|\mathrm{S}_{11}\right\|$ and $\left\|\mathrm{S}_{22}\right\|$), the resulting frequency response may be \qquad In a
	Maximum Gain Microwave Amplifier Design, since most transistors exhibit a significant impedance mismatch (large $\left\|S_{11}\right\|$ and $\left\|S_{22}\right\|$), the resulting frequency response may be \qquad In a
	Maximum Gain Microwave Amplifier Design, since most transistors exhibit a significant impedance mismatch (large $\left\|\mathrm{S}_{11}\right\|$ and $\left\|\mathrm{S}_{22}\right\|$), the resulting frequency response may be \qquad In a
	Maximum Gain Microwave Amplifier Design, since most transistors exhibit a significant impedance mismatch (large $\left\|\mathrm{S}_{11}\right\|$ and $\left\|\mathrm{S}_{22}\right\|$), the resulting frequency response may be \qquad In a
	Maximum Gain Microwave Amplifier Design, since most transistors exhibit a significant impedance mismatch (large $\left\|S_{11}\right\|$ and $\left\|S_{22}\right\|$), the resulting frequency response may be \qquad In a
	Maximum Gain Microwave Amplifier Design, since most transistors exhibit a significant impedance mismatch (large $\left\|\mathrm{S}_{11}\right\|$ and $\left\|\mathrm{S}_{22}\right\|$), the resulting frequency response may be \qquad In a
	Maximum Gain Microwave Amplifier Design, since most transistors exhibit a significant impedance mismatch (large $\left\|S_{11}\right\|$ and $\left\|S_{22}\right\|$), the resulting frequency response may be \qquad In a
	Maximum Gain Microwave Amplifier Design, since most transistors exhibit a significant impedance mismatch (large $\left\|\mathrm{S}_{11}\right\|$ and $\left\|\mathrm{S}_{22}\right\|$), the resulting frequency response may be \qquad In a
	Maximum Gain Microwave Amplifier Design, since most transistors exhibit a significant impedance mismatch (large $\left\|\mathrm{S}_{11}\right\|$ and $\left\|\mathrm{S}_{22}\right\|$), the resulting frequency response may be \qquad In a
	Maximum Gain Microwave Amplifier Design, since most transistors exhibit a significant imnedance mismatch (large $\mid S$. $ل$ and $\mid S$. $ل$) the recultino freauencv resnonse mav he
A	narrowband
	wideband
C	flat
	rippled
D	From practical design considerations for microwave amplifier, always there is a trade-off between
A	stability and gain
B	stability and noise figure
C	gain and operational bandwidth
D	gain and noise figure
Q	Amplifier efficiency is the ratio...................
A	RF output power to DC input power
B	DC input power to RF output power
C	RF input power to DC input power
D	RF output power to DC output power

Q	Efficiency of microwave amplifier
A	Increases with increasing frequency
B	decreases with increasing frequency
C	Increases with decreasing frequency
D	increases with increasing frequency
Q	For an output power of 10 W , the power gain and the drain efficiency of power amplifier are 16.4 dB and 26% respectively $\%$. What is DC input power?
A	38.5
B	40.5
C	35.5
D	37.5
Q	Silicon bipolar transistors havepower outputs than GaAs FETs at frequencies up to a few GHz , and are generally
A	Lower, Cheaper
B	Higher, Costly
C	Higher, Cheaply
D	Lower, Costly
Qare becoming very popular for high-power applications at RF and low microwave frequencies.
A	Silicon bipolar ransistors
B	GaAs FETs
C	GaN HBTs
D	Silicon Diode
Q	In small-signal amplifier design, the first step is to check the
A	Stability of the device.
B	Input impedance of the device.
C	Output impedance of the device.
D	Gain of the device.
	The ratio of power dissipated in the load ZL to the power delivered to the input of the two-port network is called as......................
Q	
A	Available power gain
B	Transducer power gain
C	Network Power gain
D	Power Gain
Q	Amplifier efficiency is also referred as............
A	Base efficiency
B	Drain efficiency
C	Gate efficiency
D	Emitter efficiency

A silicon bipolar junction transistor has the following scattering parameters at 1.0 GHz , with a 50 ohm reference impedance: $\mathrm{S} 11=0.38 \angle-158, \mathrm{~S} 12=0.11 \angle 54$, $\mathrm{S} 21=3.50 \angle 80$, $\mathrm{S} 22=0.40 \angle-43$, The source impedance is $\mathrm{ZS}=25 \mathrm{Ohm}$ and the load impedance is $\mathrm{ZL}=$
40 Ohm . What is the power gain? (angles are in degree)

20.1
18.1

13.1
22.1

To achieve stable oscillation $\mathrm{Zin}+\mathrm{ZL}=0$ is the -------- condition to be satisfied by the microwave oscillator.
necessary and sufficient.
necessary.
sufficient.
unnecessary
Oscillators operating at millimeter wavelength are ------------.
less efficient.
more efficient
insensitive to noise
producing desire power
One port oscillator is designed with help of ---------
Gunn diode
varactor diode
BJT
FET
Under the steady state condition the net resistance is:
$R_{\text {in }}+R_{L}>0 R_{\text {in }}$
$R_{\text {in }}+R_{L} \neq 0 R_{\text {in }}$
$R_{\text {in }}+R_{L}=O R_{\text {in }}$
$R_{\text {in }}+R_{L}<O R_{\text {in }}$
A -------- terminal device leads to two port oscillator
one
two
three
four
The reflection coefficient of Gunn diode at 10 GHz is $1.24 \angle 30$ degree, the load reactance selected in ohm in the oscillator circuit is.
58.34Ω
158.34Ω
100Ω
-159Ω
In two port oscillator --------- is one of the important circuit
input and output matching network
generator tuning network and output matching network
input two port filter network

urce and load network
In oscillator circuit source and load reflection coefficients are
$\left\|\left\|\Gamma_{S}\right\|>1,\left\|\Gamma_{L}\right\|<1\right\| \Gamma_{S}\left\|>1,\left\|\Gamma_{L}\right\|<1\right\| \Gamma_{S}\left\|>1,\left\|\Gamma_{L}\right\|<1\right\| \Gamma_{S}\left\|>1,\left\|\Gamma_{L}\right\|<1\right\| \Gamma_{S}\left\|>1,\left\|\Gamma_{L}\right\|<1\right\| \Gamma_{S}$
$\left\|\Gamma_{\mathrm{S}}\right\|<1,\left\|\Gamma_{\mathrm{L}}\right\|<1\left\|\Gamma_{\mathrm{S}}\right\|<1,\left\|\Gamma_{\mathrm{L}}\right\|<1\left\|\Gamma_{\mathrm{s}}\right\|<1,\left\|\Gamma_{\mathrm{L}}\right\|<1\left\|\Gamma_{\mathrm{s}}\right\|<1,\left\|\Gamma_{\mathrm{L}}\right\|<1\left\|\Gamma_{\mathrm{s}}\right\|<1,\left\|\Gamma_{\mathrm{L}}\right\|<1 \mid \Gamma_{\text {S }}$
$\left\|\Gamma_{S}\right\|>1,\left\|\Gamma_{L}\right\|>1\left\|\Gamma_{S}\right\|>1,\left\|\Gamma_{L}\right\|>1\left\|\Gamma_{S}\right\|>1,\left\|\Gamma_{L}\right\|>1\left\|\Gamma_{S}\right\|>1,\left\|\Gamma_{L}\right\|>1\left\|\Gamma_{S}\right\|>1,\left\|\Gamma_{L}\right\|>1 \mid \Gamma_{\text {S }}$
$\left\|\left\|\Gamma_{S}\right\|<1,\left\|\Gamma_{L}\right\|>1\right\| \Gamma_{S}\left\|<1,\left\|\Gamma_{L}\right\|>1\right\| \Gamma_{S}\left\|<1,\left\|\Gamma_{L}\right\|>1\right\| \Gamma_{S}\left\|<1,\left\|\Gamma_{L}\right\|>1\right\| \Gamma_{\text {S }}\left\|<1,\left\|\Gamma_{L}\right\|>1\right\| \Gamma_{S}$
In oscillator circuit source and load resistances are
$R_{s}<0, R_{L}>0 R_{s}<0, R_{L}>0 R_{s}<1$
$R_{s}>0, R_{L}>0 R_{s}>0, R_{L}>0 R_{s}>($
$R_{s}<0, R_{L}<0 R_{s}<0, R_{L}<0 R_{s}<1$
$R_{s}>0, R_{L}<0 R_{S}>0, R_{L}<0 R_{s}>0$
Output of a mixer in transmitting chain is
Lower frequency
Higher frequency
Lower Voltage
Higher Voltage
The IS-54 digital cellular telephone system uses a receiver frequency band of 869-894 MHz with a first IF frequency of 87 MHz and the channel bandwidth of 30 kHz . Then what is RF Image Frequency range
1044 to 1069 MHz
1045 to 1070 MHz
1043 to 1068 MHz
1046 to 1071 MHz
The desired output from a mixer is usually selected with a
Phase-shift circuit
Crystal filter
Resonant circuit
Transformer
The mixer is sometimes called
First detector
Third detector
Second detector
Fourth detector
In Single ended FET mixer number of FET:
2
3
1
4
Image Reject Mixer generated the no of frequency are
Two upper and lower sidebands of a DSB
Two upper and lower sidebands of a USB
Two upper and lower sidebands of a SSB
Two upper and lower sidebands of a DSBSC

Q	RF input matching and RF-LO isolation can be improved through the use of:
A	Balanced mixer
B	Single-ender diode mixer
C	Single ended FET mixer
D	Image reject mixer
Q	The balance mixer number of diode is
A	2
B	1
C	3
D	4
Q	How many Low Pass Filter in Image reject mixer circuit
A	4
B	2
C	3
D	6
Q	In frequency synthesizer using PLL, the output frequency can be changed by using In frequency synthesizer using PLL, the output frequency can be changed by using In frequency synthesizer using PLL, the output frequency can be changed by using In frequency synthesizer using PLL, the output frequency can be changed by using In frequency synthesizer using PLL, the output frequency can be changed by using In frequency synthesizer using PLL, the output frequency can be changed by using In frequency synthesizer using PLL, the output frequency can be changed by using In frequency synthesizer using PLL, the output frequency can be changed by using In frequency synthesizer using PLL, the output frequency can be changed by using In frequency synthesizer using PLL, the output frequency can be changed by using In frequency synthesizer using PLL, the output frequency can be changed by using In frequency synthesizer using PLL, the output frequency can be changed by using In frequency synthesizer using PLL, the output frequency can be changed by using In frequency synthesizer using PLL, the output frequency can be changed by using In frequency synthesizer using PLL, the output frequency can be changed by using In frequency synthesizer using PLL, the output frequency can be changed by using
A	Programmable multiplier
B	Programmable adder
C	Programmable substractorProgrammable substractor
D	Programmable divider
Q	A -------------- is the important entity in frequency synthesizer using PLL
A	voltage detector
B	current detector
C	phase detector
D	power detector

Q	Frequency synthesizer used in ---------------
A	Single channel radio receiver.
	WiFi receiver.WiFi receiver.
B	Multi channel radio receiver.Multi channel radio receiver.
D	Local wireless network
	The indirect frequency synthesizer consists of divide by N programmable counter, if reference frequency is fr , then output frequency f 0 is
A	2Nfr
B	fr / N
C	Nfr
D	fr/2N
	In Frequency synthesizer using PLL with programmable divider and single modulus prescaler the frequency resolution can be increased by ---------
A	increasing divider N of the programmable divider
B	increasing reference frequency
C	decreasing reference frequency
D	increasing P of the prescaler
	In Frequency synthesizer using PLL with programmable divider $\mathrm{N}=10$ and single modulus prescaler $\mathrm{P}=5$ and the reference frequency 2 Hz , the output frequency f 0 is:
A	25 Hz
B	100Hz
C	1 Hz
D	4 Hz
	Number of memory locations of ROM in 8-bit direct digital frequency synthesizer are -----------------
A	65536
B	256
C	1024
D	16
	The word length required in direct digital frequency synthesizer for output spectral purity of at least 80 dB .
A	15
B	16
C	8
D	10
Q	8 bit words including one sign bit gives the spectral purity of ------------dB
A	56
B	42

C	48
D	64
Q	To get the spectral purity of 42 dB ---------- bits direct digital frequency synthesizer is required
A	8
B	20
C	10
D	16
Q	One method of reducing the response time of Frequency synthesizer is to include a ___
A	coarse steering signal
B	Impulse signal
C	Ramp Signal
D	Noise Signal
Q	In a DDFS, The \qquad is determined by $4 \mathrm{f}_{\mathrm{u}} / \mathrm{f}_{\mathrm{L}}$ In a DDFS, The \qquad is determined by $4 \mathrm{f}_{\mathrm{u}} / \mathrm{f}_{\mathrm{L}}$ In a DDFS, The \qquad is determined by $4 \mathrm{f}_{\mathrm{u}} / \mathrm{f}_{\mathrm{L}}$ In a DDFS, The \qquad is determined by $4 f_{u} / f_{L}$ In a DDFS, The \qquad is determined by $4 \mathrm{f}_{\mathrm{u}} / \mathrm{f}_{\mathrm{L}}$ In a DDFS, The \qquad is determined by $4 f_{u} / f_{L}$ In a DDFS, The \qquad is determined by $4 f_{u} / f_{L}$ In a DDFS, The \qquad is determined by $4 f_{u} / f_{L} \operatorname{In~a}$ DDFS, The \qquad is determined by $4 \mathrm{f}_{\mathrm{u}} / \mathrm{f}_{\mathrm{L}}$ In a DDFS, The \qquad is determined by $4 \mathrm{f}_{\mathrm{u}} / \mathrm{f}_{\mathrm{L}} \operatorname{In}$ a DDFS, The \qquad is determined by $4 \mathrm{f}_{\mathrm{u}} / \mathrm{f}_{\mathrm{L}}$ In a DDFS, The \qquad is determined by $4 \mathrm{f}_{\mathrm{u}} / \mathrm{f}_{\mathrm{L}}$
A	Reference Clock Frequency
B	highest output frequency
C	frequency resolution
D	number of points in the lowest-frequency sinusoid
Q	What is the advantage of direct synthesis method?
A	Slow frequency switching
B	Fine frequency resolution
C	Lowest frequency of operation
D	High phase noise
Q	The Method used to obtain good frequency resolution at high frequency is..........
A	Direct synthesis
B	Frequency synthesis by phase lock
C	The multiple oscillator approach
D	Variable modulus prescaling
Q	In frequency synthesizers, variable modulus prescaling provides \qquad than fixed modulus prescaling.
A	better frequency resolution
B	worst frequency resolution
C	less loop settling time
D	worst loop stability
Q	Disadvantages associated with direct frequency synthesis are greatly diminished with the frequency synthesis technique that employ:
A	DAC
B	mixer

C	PLL
D	harmonic generator
Q	In frequency synthesizers, for adequate PLL stability -
A	Loop Bandwidth = Filter Bandwidth
B	Loop Bandwidth > Filter Bandwidth
C	Loop Bandwidth < Filter Bandwidth
D	Loop Bandwidth >>> Filter Bandwidth
Q	In frequency synthesizers, the mechanism of frequency down-conversion uses phase lag of filter in feedback path. This can cause -
A	enhancement in loop performance
B	very high loop stability
C	degradation in loop performance
D	very low loop stability
Q	In Grounding system, the full form of NEC is \qquad In Grounding system, the full form of NEC is ----------In Grounding system, the full form of NEC is ----------In Grounding system, the full form of NEC is -----------In Grounding system, the full form of NEC is ----In Grounding system, the full form of NEC is \qquad -In Grounding system, the full form of NEC is \qquad -In Grounding system, the full form of NEC is \qquad -In Grounding system, the full form of NEC is \qquad -In Grounding system, the full form of NEC is \qquad
A	Nation Electric Code
B	Nation Electrical Code
C	National Electric Code
D	National Electrical Code
Q	A ------------ is the number of electric lines of flux passing through a unit area
A	Magnetic flux density
B	Electrical Flux density
C	Magnetic flux intensity
D	Electrical Flux intensity
Q	Electrical Field Intensity (E) is a
A	Differential
B	Vector
C	Scalar
D	Integral
Q	Two or more extraneous signals may combine to produce signals at frequencies close to tuned frequency of receiver is called as.
A	Intermodulation
B	Passive Intermodulation
C	Cross Talk
D	Cross Modulation
Q	Rise time of the lightning current is --------------
A	$1 \mu \mathrm{~s} 1 \mu \mathrm{~s}$
B	$2.36 \mu \mathrm{~s} 2.36 \mu \mathrm{~s}$
C	$1.36 \mu \mathrm{~s} 1.36 \mu \mathrm{~s} 1.36 \mu \mathrm{~s} 1.36$ ¢ 1.36 нs $1.36 \mu \mathrm{~s} 1.36 \mu \mathrm{~s} 1.36 \mu \mathrm{~s} 1.36 \mu \mathrm{~s}$
D	$0.36 \mu \mathrm{~s} 0.36 \mu \mathrm{~s}$

Q	Following is not a common source of the EMI
A	lightning
B	switching transient
C	high amplitude nuclear electromagnetic pulse
D	electrostatic discharge
Q	Following is a common source of the EMI
A	electrostatic discharge
B	high amplitude nuclear electromagnetic pulse
C	current transient
D	jammer
Q	Triboelectric charging occurs in -----------------
A	copper
B	aluminum
C	plastic
D	wood
Q	Signal to noise ratio of the electrical circuit can be improved by ----------------
A	increasing current
B	increasing common impedance
C	decreasing common impedance
D	decreasing current
Q	EMI stands for in RF design
A	Electromagnetic interference
B	Electromagnetic induction
C	Electromagnetic Inductance
D	Electromagnetic Interpolation
Q	Electromagnetic energy transfer or coupling from one transmission line to another line is called as...............
A	Frequency Modulation
B	Passive Intermodulation
C	Cross Talk
D	Cross Modulation
	EMI occurs when noise develops in the same phase when two conductors are used. Such EMI coupling is known as \qquad EMI occurs when noise develops in the same phase when two conductors are used. Such EMI coupling is known as \qquad EMI occurs when noise develops in the same phase when two conductors are used. Such EMI coupling is known as \qquad EMI occurs when noise develops in the same phase when two conductors are used. Such EMI coupling is known as \qquad EMI occurs when noise develops in the same phase when two conductors are used. Such EMI coupling is known as \qquad EMI occurs when noise develops in the same phase when two conductors are used. Such EMI coupling is known as \qquad EMI occurs when noise develops in the same phase when two conductors are used. Such EMI coupling is known as \qquad -
Q	
A	Radiation Coupling
B	Conduction Coupling
C	Common Mode Coupling

D	Differential Mode Coupling
Q	Frequency range of the lightning is:
A	1 KHz to 500 MHz
B	1 KHz to 50 MHz
C	1 GHz to 10 GHz
D	4 GHz to 10 GHz
Q	------------ is the number of electric lines of flux passing through a unit area.
A	Magnetic flux density
B	Electric flux density
C	Magnetic flux intensity
D	Electric flux intensity
Q	LISN is a device used to measure conducted emissions. LISN stands for
A	Line integrated stabilization network
B	Line impedance stabilization network
C	Line integrated stored network
D	Laser integrated stabilization networking
Q	Radiated emissions are characterized in terms of -
A	Volts
B	Amperes
C	Volts per Amperes (V/A)
D	Volts per meter (V/m)
Q	Following is not a standards method for measurement of radiated emission of the product
A	open area test
B	Anechoic chamber (AC) test
C	Reverberating Chamber (RC) test
D	indoor test
Q	250 milliwatt = _ dBmicrowatt
A	24
B	108
C	54
D	-6
	The -------------------- body responsible for regulation of EMC emissions in the
Q	European Union
A	FCC
B	CE
C	BIS
D	TEC
Q	The resistance to earth of an electrode is ___ soil resistivity.
A	directly proportional to
B	inversely proportional to
C	equal to
D	independent of
Q	EMC gaskets is of the order of
A	$80-100 \mathrm{~dB}$
B	8-10 dB

C	$800-1000 \mathrm{~dB}$.
D	50-70 dB
Q	EMI/EMC standards primarily focus on specifying limits for
A	Conducted and Radiated Emissions
B	Susceptibility to Conducted and Radiated Emissions
C	Maximum necessary performance specifications for given applications
D	EMC Applications Support
Q	standard include Definitions and System of Units, EMI/EMC technology.
A	MIL-STD-461
B	MIL-STD-462
C	MIL-STD-463
D	MIL-STD-464
Q	Name of the testing conducted by EMC directive that a level of electromagnetic signal generated by the product/equipment is measured.
A	immunity testing
B	emission testing
C	high voltage testing
D	low voltage testing
Q	Generally EMC is measured in --------
A	dB
B	Ohm
C	Watt
D	Volts
Q	The opposite of susceptibility is
A	Immunity
B	Emission
C	Interference
D	Electromagnetic compatibility
Q	Due to reduction in operating frequency, absorption loss
A	decreases
B	increases
C	remains unchanged
D	vanishes to zero
Q	Which test method is most preferable for immunity testing of a mobile phone over a large frequency range?
A	Open Area Test Sites (OATS)
B	Anechoic Chamber (AC)
C	Reverberating Chamber (RC)
D	Gigahertz Transverse Electromagnetic (GTEM) cell

$$
\begin{aligned}
& \left.\left.\right|^{2}\right) G_{\text {LMAX }}=1 /\left(1-\left|S_{22}\right|^{2}\right) G_{\text {LMAX }} \\
& \left.\left.\right|^{2}\right) G_{\text {Lmax }}=1 /\left(1-\left|S_{11}\right|^{2}\right) G_{\text {LMAX }} \\
& \left.\left.\right|^{2}\right) G_{\text {LIMAX }}=1 /\left(1-\left|S_{12}\right|^{2}\right) G_{L \text { LMAX }}=1 /\left(1-\left|S_{12}\right|^{2}\right) G_{\text {LMAX }}=1 /\left(1-\left|S_{12}\right|^{2}\right) G_{\text {LMAX }}=1 /\left(1-\left|S_{12}\right|^{2}\right) G_{\text {LMAX }}=1 /\left(1-\left|S_{12}\right|^{2}\right) G_{\text {LMAX }} \\
& \left.\left.\right|^{2}\right) G_{\text {LMAX }}=1 /\left(1-\left|S_{21}\right|^{2}\right) G_{\text {LMAX }} \\
& \mathrm{j}_{\mathrm{LMAX}} / \mathrm{G}_{\mathrm{Lg} \mid}=\mathrm{G}_{\mathrm{LMAX}} / \mathrm{G}_{\mathrm{Lg} \mid}=\mathrm{G}_{\mathrm{L} \mathrm{\Lambda}}
\end{aligned}
$$

$$
\begin{aligned}
& { }_{\text {'gl }}=G_{L} G_{L M A X g \mid}=G_{L} G_{L M}
\end{aligned}
$$

$$
\begin{aligned}
& +R_{L}>O R_{\text {in }}+R_{L}>O R_{\text {in }}+I \\
& +R_{L} \neq O R_{\text {in }}+R_{L} \neq O R_{\text {in }}+I \\
& +R_{L}=O R_{\text {in }}+R_{L}=O R_{\text {in }}+I \\
& +R_{L}<O R_{\text {in }}+R_{L}<O R_{\text {in }}+I
\end{aligned}
$$

$\left|>1,\left|\Gamma_{\mathrm{L}}\right|<1\right| \Gamma_{\mathrm{S}}\left|>1,\left|\Gamma_{\mathrm{L}}\right|<1\right| \Gamma_{\mathrm{S}}\left|>1,\left|\Gamma_{\mathrm{L}}\right|<1\right| \Gamma_{\mathrm{S}}\left|>1,\left|\Gamma_{\mathrm{L}}\right|<1\right| \Gamma_{\mathrm{S}}\left|>1,\left|\Gamma_{\mathrm{L}}\right|<1\right| \Gamma_{\mathrm{s}}\left|>1,\left|\Gamma_{\mathrm{L}}\right|<1\right.$ $\left|<1,\left|\Gamma_{L}\right|<1\right| \Gamma_{S}\left|<1,\left|\Gamma_{L}\right|<1\right| \Gamma_{S}\left|<1,\left|\Gamma_{L}\right|<1\right| \Gamma_{S}\left|<1,\left|\Gamma_{L}\right|<1\right| \Gamma_{S}\left|<1,\left|\Gamma_{L}\right|<1\right| \Gamma_{S}\left|<1,\left|\Gamma_{L}\right|<1\right.$ $\left|>1,\left|\Gamma_{\mathrm{L}}\right|>1\right| \Gamma_{\mathrm{S}}\left|>1,\left|\Gamma_{\mathrm{L}}\right|>1\right| \Gamma_{\mathrm{S}}\left|>1,\left|\Gamma_{\mathrm{L}}\right|>1\right| \Gamma_{\mathrm{S}}\left|>1,\left|\Gamma_{\mathrm{L}}\right|>1\right| \Gamma_{\mathrm{S}}\left|>1,\left|\Gamma_{\mathrm{L}}\right|>1\right| \Gamma_{\mathrm{S}}\left|>1,\left|\Gamma_{\mathrm{L}}\right|>1\right.$ $\left|<1,\left|\Gamma_{L}\right|>1\right| \Gamma_{S}\left|<1,\left|\Gamma_{L}\right|>1\right| \Gamma_{S}\left|<1,\left|\Gamma_{L}\right|>1\right| \Gamma_{S}\left|<1,\left|\Gamma_{L}\right|>1\right| \Gamma_{S}\left|<1,\left|\Gamma_{L}\right|>1\right| \Gamma_{S}\left|<1,\left|\Gamma_{L}\right|>1\right.$
$J, R_{L}>0 R_{s}<0, F$ $J, R_{L}>0 R_{s}>0, F$ $J, R_{L}<0 R_{s}<0, R_{L}<O R_{s}<0, R_{L}<0 R_{s}<0, R_{L}<O R_{s}<0, R_{L}<0 R_{s}<0, R_{L}<0 R_{s}<0, R_{L}<O R_{s}<0, R_{L}<O R_{s}<0, R_{L}<O R_{s}<0, F$ $J, R_{L}<O R_{s}>0, F$

$$
\begin{aligned}
& =1 /\left(1-\left|S_{22}\right|^{2}\right) G_{\text {LMAX }}=1 /(1-\mid \\
& =1 /\left(1-\left|S_{11}\right|^{2}\right) G_{\text {Lmax }}=1 /(1-\mid \\
& =1 /\left(1-\left|S_{12}\right|^{2}\right) G_{\text {LMAX }}=1 /(1-\mid \\
& =1 /\left(1-\left|S_{21}\right|^{2}\right) G_{\text {LMAX }}=1 /(1-\mid \\
& { }_{\Lambda A X} / G_{L \mathrm{gl}}=\mathrm{G}_{\mathrm{LMAX}} / \mathrm{G}_{\mathrm{Lg} \mid}=\mathrm{G}_{\mathrm{LMAX}} / G_{\mathrm{Lg} \mid}=\mathrm{G}_{\mathrm{LMAX}} / G_{\mathrm{Lg} \mid}=\mathrm{G}_{\mathrm{LMAX}}
\end{aligned}
$$

$$
\begin{aligned}
& G_{0 \mathrm{gl} \mid}=G_{l} / G_{0 \mathrm{gl} \mid}=\mathrm{G}_{\mathrm{l}} / \mathrm{G}_{0 \mathrm{gl} \mid}=\mathrm{G}_{\mathrm{l}} / \mathrm{G}_{0 \mathrm{gl}}=\mathrm{G}_{\mathrm{l}} / \mathrm{G}_{0}
\end{aligned}
$$

$$
\begin{aligned}
& z_{L}>0 \\
& z_{L} \neq 0 \\
& z_{L}=0 \\
& z_{L}<0
\end{aligned}
$$

$\left|\Gamma_{S}\right|>1,\left|\Gamma_{L}\right|<1\left|\Gamma_{S}\right|>1,\left|\Gamma_{L}\right|<1\left|\Gamma_{S}\right|>1,\left|\Gamma_{L}\right|<1\left|\Gamma_{S}\right|>1,\left|\Gamma_{L}\right|<1\left|\Gamma_{S}\right|>1,\left|\Gamma_{L}\right|<1\left|\Gamma_{S}\right|>1, \mid \Gamma_{L}$ $\left|\Gamma_{S}\right|<1,\left|\Gamma_{L}\right|<1\left|\Gamma_{S}\right|<1,\left|\Gamma_{L}\right|<1\left|\Gamma_{S}\right|<1,\left|\Gamma_{L}\right|<1\left|\Gamma_{S}\right|<1,\left|\Gamma_{L}\right|<1\left|\Gamma_{s}\right|<1,\left|\Gamma_{L}\right|<1\left|\Gamma_{s}\right|<1, \mid \Gamma_{L}$ $\left|\Gamma_{S}\right|>1,\left|\Gamma_{L}\right|>1\left|\Gamma_{S}\right|>1,\left|\Gamma_{L}\right|>1\left|\Gamma_{S}\right|>1,\left|\Gamma_{L}\right|>1\left|\Gamma_{S}\right|>1,\left|\Gamma_{L}\right|>1\left|\Gamma_{S}\right|>1,\left|\Gamma_{L}\right|>1\left|\Gamma_{S}\right|>1, \mid \Gamma_{L}$ $\left|\Gamma_{S}\right|<1,\left|\Gamma_{L}\right|>1\left|\Gamma_{S}\right|<1,\left|\Gamma_{L}\right|>1\left|\Gamma_{S}\right|<1,\left|\Gamma_{L}\right|>1\left|\Gamma_{S}\right|<1,\left|\Gamma_{L}\right|>1\left|\Gamma_{S}\right|<1,\left|\Gamma_{L}\right|>1\left|\Gamma_{S}\right|<1, \mid \Gamma_{L}$
$i_{L}>0 R_{s}<0, R_{L}>0$
$i_{L}>0 R_{s}>0, R_{L}>0$
$i_{L}<O R_{s}<0, R_{L}<0$
$i_{L}<0$

$$
\begin{aligned}
& \left.\left|S_{22}\right|^{2}\right) G_{L \text { max }}=1 /\left(1-\left|S_{22}\right|^{2}\right) G_{L \text { Max }}=1 /\left(1-\left|S_{22}\right|^{2}\right) G_{\text {LMAX }}=1 /\left(1-\left|S_{22}\right|^{2}\right) G_{\text {LMAX }}=1 /\left(1-\left|S_{22}\right|^{2}\right) G_{L \text { MAX }}=1 /\left(1-\left|S_{22}\right|^{2}\right)^{2} G_{L} \\
& \left.\left|S_{11}\right|^{2}\right) G_{L \text { LMAX }}=1 /\left(1-\left|S_{11}\right|^{2}\right) G_{\text {Lmax }}=1 /\left(1-\left|S_{11}\right|^{2}\right) G_{L \text { LMAX }}=1 /\left(1-\left|S_{11}\right|^{2}\right) G_{\text {LMAX }}=1 /\left(1-\left|S_{11}\right|^{2}\right) G_{L \text { LMAX }}=1 /\left(1-\left|S_{11}\right|^{2}\right) G_{L} \\
& \left.\left|S_{12}\right|^{2}\right) G_{L \text { max }}=1 /\left(1-\left|S_{12}\right|^{2}\right) G_{L} \\
& \left.\left|S_{21}\right|^{2}\right) G_{\text {LMAX }}=1 /\left(1-\left|S_{21}\right|^{2}\right) G_{L} \\
& / \mathrm{G}_{\mathrm{Lg} \mid}=\mathrm{G}_{\mathrm{LMAX}} / \mathrm{G}_{\mathrm{L}} \\
& \text { MAXE }=\mathrm{G}_{\mathrm{l}} / \mathrm{G}_{\mathrm{LMAX}}
\end{aligned}
$$

$|<1| \Gamma_{\mathrm{s}}\left|>1,\left|\Gamma_{\mathrm{L}}\right|<1\right| \Gamma_{\mathrm{s}}\left|>1,\left|\Gamma_{\mathrm{L}}\right|<1\right.$
$|<1| \Gamma_{S}\left|<1,\left|\Gamma_{L}\right|<1\right| \Gamma_{S}\left|<1,\left|\Gamma_{L}\right|<1\right.$
$|>1| \Gamma_{\mathrm{S}}\left|>1,\left|\Gamma_{\mathrm{L}}\right|>1\right| \Gamma_{\mathrm{S}}\left|>1,\left|\Gamma_{\mathrm{L}}\right|>1\right.$
$|>1| \Gamma_{s}\left|<1,\left|\Gamma_{L}\right|>1\right| \Gamma_{S}\left|<1,\left|\Gamma_{L}\right|>1\right.$

$$
\begin{aligned}
& \text { max }=1 /\left(1-\left|S_{22}\right|^{2}\right) G_{\text {Lmax }}=1 /\left(1-\left|S_{22}\right|^{2}\right) G_{\text {LMAX }}=1 /\left(1-\left|S_{22}\right|^{2}\right) G_{\text {LMAX }}=1 /\left(1-\left|S_{22}\right|^{2}\right) G_{\text {LMAX }}=1 /\left(1-\left|S_{22}\right|^{2}\right) \\
& \text { max }=1 /\left(1-\left|S_{11}\right|^{2}\right) G_{\text {LMAX }}=1 /\left(1-\left.\left|\mathrm{S}_{11}\right|^{2}\right|^{2} G_{\text {LMAX }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right) G_{\text {LMAX }}=1 /\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)\right. \\
& \text { MAX }=1 /\left(1-\left|\mathrm{S}_{12}\right|^{2}\right) G_{\text {LMAX }}=1 /\left(1-\left|\mathrm{S}_{12}\right|^{2}\right) \mathrm{G}_{\text {LMAX }}=1 /\left(1-\left|\mathrm{S}_{12}\right|^{2}\right) \mathrm{G}_{\text {LMAX }}=1 /\left(1-\left|\mathrm{S}_{12}\right|^{2}\right) \\
& \text { mAX }=1 /\left(1-\left|\mathrm{S}_{21}\right|^{2}\right) G_{\text {LMAX }}=1 /\left(1-\left|\mathrm{S}_{21}\right|^{2}\right) G_{\text {LMAX }}=1 /\left(1-\left|\mathrm{S}_{21}\right|^{2}\right) G_{\text {LMAX }}=1 /\left(1-\left|\mathrm{S}_{21}\right|^{2}\right)
\end{aligned}
$$

