These are sample MCQs to indicate pattern, may or may not appear in examination University of Mumbai

Online Examination 2020

Program: BE Computer Engineering
Curriculum Scheme: Revised 2012
Examination: Final Year Semester VII

Course Code: CPC 701 and Course Name: Digital Signal Processing
Time: Max. Marks: 50

Q2.	For N-Point DFT, How many Complex Additions are required to be performed?
Option A:	$N^{*} N$
Option B:	$N(N-1)$
Option C:	$4^{*} N$
Option D:	$N / 2$

	Q3.
What is the full form of BIBO?	
Option B:	Boundary input Boundary Output
Option C:	Boundary Input Bounded Output
Option D:	Bonded Input Bonded Output

Q4.	For 8-Point FFT, How many Complex Additions are required to be performed?
Option A:	12
Option B:	20
Option C:	24
Option D:	30

Q5.	Comment on the causality of $\mathrm{y}[\mathrm{n}]=\mathrm{x}[-\mathrm{n}]$.
Option $\mathrm{A}:$	Time invariant
Option B:	Causal
Option C:	Non causal
Option D:	Time varying

Q6.	Find energy of $\mathrm{x}(\mathrm{n})=\{1,2,2,3\}$.
Option A:	
Option B:	10
Option C:	18
Option D:	30

Q7.	A signal is anti-causal if
Option $\mathrm{A}:$	$\mathrm{x}(\mathrm{t})=0$ for $\mathrm{t}=0$
Option $\mathrm{B}:$	$\mathrm{x}(\mathrm{t})=1$ for $\mathrm{t}<0$
Option C:	$\mathrm{x}(\mathrm{t})=1$ for $\mathrm{t}>0$
Option D:	$\mathrm{x}(\mathrm{t})=0$ for $\mathrm{t}>0$

Q8.	The system described by the input-output equation $\mathrm{y}(\mathrm{n})=\mathrm{nx}(\mathrm{n})+\mathrm{bx}(\mathrm{n})$ is a
Option A:	Static system
Option B:	Dynamic System
Option C:	Identical system
Option D:	Analog system

Q9.	find IFFT of $\mathrm{X}(\mathrm{k})=\{10,-2+2 \mathrm{j},-2,-2-2 j\}$
Option A:	$\mathrm{x}(\mathrm{n})=\{3,4,5,1\}$
Option B:	$\mathrm{x}(\mathrm{n})=\{4,3,2,1\}$
Option C:	$\mathrm{x}(\mathrm{n})=\{1,2,3,4\}$
Option D:	$\mathrm{x}(\mathrm{n})=\{3,4,2,1\}$

Q10.	if $X(\mathrm{k})=\{15,-3+6 \mathrm{j},-5,-3-6 \mathrm{j}\}$ and $\mathrm{x}(\mathrm{n})$ is inverse of $\mathrm{X}(\mathrm{k})$, then find $\mathrm{x}(0)$.
Option A:	15
Option B:	-5
Option C:	1
Option D:	4

Q11.	$x(n) * \delta(n-n 0)=$
Option A:	
Option B:	$x(n+n 0)$
Option C:	$x(n-n 0)$
Option D:	$x(-n-n 0)$

Q12.	Which of the following should be done in order to convert a continuous-time signal to a discrete-time signal?

Option A:	Sampling
Option B:	Differentiating
Option C:	Integrating
Option D:	Convolving

Q13.	Calculate Number of Complex Multiplications required to be done in calculation of 64- Point FFT?
Option A:	64
Option B:	128
Option C:	192
Option D:	512

Q14.	A signal is an energy signal if the signal has average energy equal to___
Option $\mathrm{A}:$	Infinite
Option $\mathrm{B}:$	Finite
Option $\mathrm{C}:$	Zero
Option $\mathrm{D}:$	Does not depend on the average energy value

Q15.	The odd part of a signal $\mathrm{x}(\mathrm{t})$ is
Option $\mathrm{A}:$	
Option $\mathrm{B}:$	$\mathrm{x}(\mathrm{t})+\mathrm{x}(-\mathrm{t})$
Option C:	$\mathrm{x}(\mathrm{t})-\mathrm{x}(-\mathrm{t})$
Option D:	$(1 / 2)^{*}(\mathrm{x}(\mathrm{t})-\mathrm{x}(-\mathrm{t}))$

Q16.	Which of the following systems is linear?
Option A:	$\mathrm{y}(\mathrm{t})=\sin (\mathrm{x}(\mathrm{t}))$
Option $\mathrm{B}:$	$\mathrm{y}(\mathrm{t})=\log (\mathrm{t}(\mathrm{t})$
Option C:	$\mathrm{y}(\mathrm{t})=\cos (\mathrm{x}(\mathrm{t}))$
Option $\mathrm{D}:$	$\mathrm{y}(\mathrm{t})=\mathrm{dx}(\mathrm{t}) / \mathrm{dt}$

Q17.	Correlation analysis is a
Option A:	Itvalrate amalyss
Option B:	Divalrate arraysts
Option C:	Utuvatrate amatys
Option D:	Univariate analysis and Bivariate Analysis

Q18.	Based on the data of exercise hours of a person and its age, how you can give the general remark about time to be spent on fitness by a human?
Option A:	Using Carl's correlation coefficient
Option B:	Using Circular convolution
Option C:	Using IDFT

Option D:	Using Linear convolution
Q19.	incourematutiouetictertis alvays
Option A:	1
Option B:	
Option C:	Between + 1 and - 1
Option D:	0

Q20.	Fast convolution means
Option A:	Reduction of multiplication against increase in addition operations
Option B:	Reduction of addition against increase in multiplication operations
Option C:	Reduction of addition against increase in subtraction operations
Option D:	Reduction of subtraction against increase in multiplication operations

Q21.	The interface between an analog signal and a digital processor is
Option A:	D / A converter
Option $\mathrm{B}:$	A / D converter
Option $\mathrm{C}:$	Modulator
Option $\mathrm{D}:$	Demodulator

Q22.	In which of the speech related application, DSP is not used?
Option A:	Speech Synthesis
Option B:	Speech Recognition
Option C:	Speech Coding
Option D:	Direct Speech Recording

Q23.	TMS320C54XX is
Option A:	General Purpose DSP
Option B:	Special Purpose DSP
Option C:	General Purpose Microprocessor
Option D:	Special Purpose Microprocessor

Q24.	What are elements of 3rd row of [W4] DFT matrix?
Option A:	$[1,1,1,1]$
Option B:	$[1, \mathrm{j}, 1,-\mathrm{j}]$
Option C:	$[1,-1,1,-1]$
Option D:	$[1,-\mathrm{j}, 1, \mathrm{j}]$

Q25.	What is DFT of sequence $x(\mathrm{n})=\{1,1,2,2\} ?$
Option A:	$X(\mathrm{~K})=\{2,1-\mathrm{j}, 0,2-\mathrm{j}\}$
Option B:	$X(\mathrm{~K})=\{6,-1+\mathrm{j}, 0,-1-\mathrm{j}\}$
Option C:	$X(\mathrm{~K})=\{4,1-\mathrm{j}, 0,1+\mathrm{j}\}$
Option D:	$X(\mathrm{~K})=\{6,-\mathrm{j}, \mathrm{j}, 0,2+\mathrm{j}\}$

