Program: BE Mechanical Engineering Curriculum Scheme: 2016-R (CBCGS) Examination: Second Year Semester: IV

Course Code: MEC 405 and Course Name: Kinematics of Machinery

Time:1 Hour

Max Marks:50

Q1.	When does the moment of inertia of a body come into the picture?
Option A:	When the motion is rotational
Option B:	When the motion is along a curved path
Option C:	When the motion is linear
Option D:	When stationary
Q2.	When a body of mass moment of inertia <i>I</i> (about a given axis) is rotated about
	that axis with an angular velocity, then the kinetic energy of rotation is
Option A:	0.5Ιω
Option B:	Ιω
Option C:	$0.5 \mid \omega^2$
Option D:	$I \omega^2$
Q3.	When the motion between two elements of a pair is in a definite direction
	irrespective of the direction of the force applied
Option A:	Successfully constrained motion
Option B:	Incompletely constrained motion
Option C:	Completely constrained motion
Option D:	Circular constrained motion
Q4.	ABCD is a four-link mechanism.AD is the fixed link. AB=30mm,
	BC=50mm,CD=60mm and AD=70mm. It is a
Option A:	Crank-rocker mechanism
Option B:	Crank-slotted lever mechanism
Option C:	
	Double-rocker mechanism
Option D:	Double-rocker mechanism Double-crank mechanism
Option D:	Double-rocker mechanism Double-crank mechanism
Option D: Q5.	Double-rocker mechanism Double-crank mechanism In kinematic pair, when the elements have point or line contact while in motion
Option D: Q5.	Double-rocker mechanism Double-crank mechanism In kinematic pair, when the elements have point or line contact while in motion it is a
Option D: Q5. Option A:	Double-rocker mechanism Double-crank mechanism In kinematic pair, when the elements have point or line contact while in motion it is a Higher pair
Option D: Q5. Option A: Option B:	Double-rocker mechanism Double-crank mechanism In kinematic pair, when the elements have point or line contact while in motion it is a Higher pair Closed pair
Option D: Q5. Option A: Option B: Option C:	Double-rocker mechanism Double-crank mechanism In kinematic pair, when the elements have point or line contact while in motion it is a Higher pair Closed pair Lower pair
Option D: Q5. Option A: Option B: Option C: Option D:	Double-rocker mechanism Double-crank mechanism In kinematic pair, when the elements have point or line contact while in motion it is a Higher pair Closed pair Lower pair Spherical pair
Option D: Q5. Option A: Option B: Option C: Option D:	Double-rocker mechanism Double-crank mechanism In kinematic pair, when the elements have point or line contact while in motion it is a Higher pair Closed pair Lower pair Spherical pair Inversion of a mechanism means
Option D: Q5. Option A: Option B: Option C: Option D: Q6.	Double-rocker mechanism Double-crank mechanism In kinematic pair, when the elements have point or line contact while in motion it is a Higher pair Closed pair Lower pair Spherical pair Inversion of a mechanism means Fixing different links in a kinematic abain
Option D: Q5. Option A: Option B: Option C: Option D: Q6. Option A:	Double-rocker mechanism Double-crank mechanism In kinematic pair, when the elements have point or line contact while in motion it is a Higher pair Closed pair Lower pair Spherical pair Inversion of a mechanism means Fixing different links in a kinematic chain Turning it unside down
Option D: Q5. Option A: Option B: Option C: Option D: Q6. Option A: Option B:	Double-rocker mechanism Double-crank mechanism In kinematic pair, when the elements have point or line contact while in motion it is a Higher pair Closed pair Lower pair Spherical pair Inversion of a mechanism means Fixing different links in a kinematic chain Turning it upside down Changing a bigher point a lower pair
Option D: Q5. Option A: Option B: Option C: Option D: Q6. Option A: Option B: Option C:	Double-rocker mechanism Double-crank mechanism In kinematic pair, when the elements have point or line contact while in motion it is a Higher pair Closed pair Lower pair Spherical pair Inversion of a mechanism means Fixing different links in a kinematic chain Turning it upside down Changing a higher pair to lower pair

Q7.	In Tchebicheff mechanism four links OA, QB, AB and OQ(fixed), the links OA and
	QB are equal and crossed, then the links AB:OQ:OA are in the following
	proportions
Option A:	2.5:3:2
Option B:	2:1:2.5
Option C:	1:2:2.5
Option D:	3:2.5:1
Q8.	Determine the maximum permissible angle between the shaft axes of a universal
	joint if the driving shaft rotates at 800rpm and the total fluctuations of speed
	does not exceed 60rpm
Option A:	11.90
Option B:	13.40
Option C:	15.60
Option D:	14.5
Q9.	The Coriolis component of acceleration exists whenever a point moves along a
	path that has
Option A:	Linear displacement
Option B:	Rotational motion
Option C:	Gravitational acceleration
Option D:	Tangential acceleration
Q10.	Instantaneous center of rotation of a link in a four bar mechanism lies on
Option A:	right side pivot of this link
Option B:	
Option C:	a point obtained by intersection on extending adjoining links
Option D:	none of the mentioned
Q11.	The number of links and instantaneous centers in a reciprocating engine
Oution A.	mechanism are
Option A:	4,4
Option B:	4,5
Option C:	5,4
Option D:	4,0
012	The linear velocity of a rotating hody is given by the relation
Q12.	The linear velocity of a rotating body is given by the relation
Option A:	$v = i\omega$
Option B:	$V = 1/\omega$
Option C:	$V = \omega/r$
Option D:	
012	The component of the acceleration directed towards the contex of retation of a
Q13.	revolving body is known as
	revolving body is known as component.

Option A:	tangential
Option B:	centripetal
Option C:	coriolis
Option D:	none of the mentioned
Q14.	The linear velocity of a point relative to another point on the same link is
	to the line joining the points.
Option A:	perpendicular
Option B:	parallel
Option C:	
Option D:	at 60°
045	
Q15.	Which of the following statements is false for SHM follower motion?
Option A:	SHM can be used only for moderate speed purpose
Option B:	The acceleration is zero at the beginning and the end of each stroke
Option C:	The jerk is maximum at the mid of each stroke
Option D:	Velocity of follower is maximum at the mid of each stroke
Q16	Which motion of follower is best for high speed cams?
Option A:	SHM follower motion
Option B:	Uniform acceleration and retardation of follower motion
Option C:	Cycloidal motion follower
Option D:	Uniform velocity
017	The reference point on the follower to law the compression is known as the
Q17	Cam contro
Option A:	
Option C:	Ditch point
Option D:	Prime point
Option D.	
018	Two gear wheels mesh externally and are to give a velocity ratio of 3 to 1. The
QIO	teeth are of involute form : module = 6 mm addendum = one module pressure
	angle = 20° The ninion rotates at 90 r n m. Determine : 1. The number of teeth
	on the ninion to avoid interference on it and the corresponding number of teeth
	on the wheel
Ontion A [.]	15
Option B:	39
Option C:	19
Ontion D:	29
019	The radial distance from the top of a tooth to the bottom of a tooth in a meshing
	gear, is called
Ontion A [.]	dedendum
Option B:	addendum
Option C	clearance
Option D	working depth
option D.	

Q20	The size of a gear is usually specified by
Option A:	pressure angle
Option B:	circular pitch
Option C:	diametral pitch
Option D:	pitch circle diameter
Q21	A pinion having 30 teeth drives a gear having 80 teeth. The profile of the gears is
	involute with 20° pressure angle, 12 mm module and 10 mm addendum. Find
	the length of path of contact
Option A:	52.3
Option B:	62.3
Option C:	42.3
Option D:	33.2
Q22	The velocity ratio of two pulleys connected by an open belt or crossed belt is
Option A:	directly proportional to their diameters
Option B:	inversely proportional to their diameters
Option C:	directly proportional to the square of their diameters
Option D:	inversely proportional to the square of their diameters
Q23	Due to slip of the belt, the velocity ratio of the belt drive
Option A:	decreases
Option B:	increases
Option C:	does not change
Option D:	none of the mentioned
Q24	The velocity of the belt for maximum power is
Option A:	√T/3m
Option B:	√T/4m
Option C:	√T/5m
Option D:	√T/6m
Q25	The distance between hinge centers of two corresponding links is known as
Option A:	
Option B:	Pitch circle diameter
Option C:	Sprocket length
Option D:	Sprocket diameter