Program: BE Mechanical Engineering

Curriculum Scheme: Revised 2016

Examination: Second Year, Semester IV CBSGS

Course Code: MEC402 and Course Name: Fluid Mechanics

Time: 1 hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	If a person studies about a fluids motion where pressure forces are considered, what will you call his domain of study?
Option A:	Fluid dynamics
Option A:	Fluid Mechanics
Option C:	Fluid statics
Option D:	Fluid kinematics
Option D.	
Q2.	Weight density of fluid is defined as
Option A:	Volume of fluid / Weight of fluid
Option B:	Mass of fluid / Volume of fluid
Option C:	Weight of fluid x Volume of fluid
Option D:	Weight of fluid /Volume of fluid
Q3.	In Newtonian fluid: A real fluid in which the shear stress is directly proportional
	to
Option A:	the rate of shear strain
Option B:	the rate of shear stress
Option C:	the rate of tensile strain
Option D:	the rate of compressive strain
Q4.	In the fluid flow the net force $F_x = (F_g)_x + (F_p)_x + (F_v)_x + (F_t)_x + (F_c)_x$ If the
	force F_t is negligible the equation of motion are called
Option A:	Reynolds's equation
Option B:	Navier-Stokes equation
Option C:	Euler's equation
Option D:	Continuity equation
Q5.	Moment of momentum equation is
Option A:	$T = \rho Q [V_2 r_2 + V_1 r_1]$
Option B:	$T = \rho Q [V_2 r_2 - V_1 r_1]$
Option C:	$T = Q[V_2r_2 - V_1r_1]$
Option D:	$T = \rho [V_2 r_2 - V_1 r_1]$
Q6.	Orifice meter is used for measurement of
Option A:	Rate of flow

Velocity at point
Pressure
Temperature
Pascal's Law states that the pressure or intensity of pressure at a point in a static fluid is
unequal in all directions
equal in all directions
Only along x direction
Only along y direction
Pitot tube is used for measurement of
Discharge
Flow
Velocity at point
Pressure
The force of buoyancy or buoyancy
is a vertical force and is equal to the weight of the fluid displaced by the body
is a horizontal force and is equal to the weight of the fluid displaced by the body
is a vertical force and is equal to the volume of the fluid displaced by the body
is a inclined force and is equal to the mass of the fluid displaced by the body
Which is the correct Fuler's equation of motion
Which is the correct Euler's equation of motion
$\left(\frac{\partial p}{\sigma}\right) + gdz + vdv = 0$
$\left(\frac{\partial p}{\sigma}\right) + dz + vdv = 0$
$\left(\frac{\partial p}{\sigma}\right) + gdz + dv = 0$
$\partial p + gdz + vdv = 0$
Venturimeter is used for measurement of
Temperature
Rate of Flow
Velocity at point
Pressure
If Reynold's number is less than 2000
•
It is called laminar flow
It is called turbulent flow

Q13.	Major loss in the pipes because of
Option A:	Sudden expansion of pipe
Option B:	Sudden contraction of pipe
Option C:	friction
Option D:	Bend in pipe
Q14.	The velocity vector in a fluid flow is given as $V = 4x^3i - 10x^2yj + 2tk$. Find the velocity of a fluid particle at (2,1,3) at time t=1
Option A:	55.51 units
Option B:	71.56 units
Option C:	61.26 units
Option D:	51.26 units
00000	
Q15.	A stream function is given by $\psi = 5x - 6y$. Calculate the magnitude of resultant velocity
Option A:	5.81 unit/sec
Option B:	7.81 unit/sec
Option C:	9.81 unit/sec
Option D:	10.81 unit/sec
Q16.	An orifice is known as small orifice when the head of liquid from the center of
	orifice is
Option A:	More than 10 times the depth of orifice
Option B:	Less than 10 times the depth of orifice
Option C:	Less than 5 times the depth of orifice
Option D:	More than 5 times the depth of orifice
Q17.	Sink flow is the flow in which fluid moves
Option A:	radially inwards towards a point where it disappears at a constant rate
Option B:	radially outwards from a point where it disappears at a constant rate
Option C:	radially inwards towards a point where it disappears at variable rate
Option D:	radially outwards from a point where it disappears at a variable rate
Q18.	The Navier- Stokes equation can be used in which of the following applications
Option A:	Automobiles
Option B:	Ocean Currents
Option C:	Airplanes
Option D:	Thermometer
Q19.	The flow of a fluid along a curved path or the flow of a rotating mass of fluid is
	known as a
Option A:	Vortex flow
Option B:	Steady flow
Option C:	Unsteady flow
Option D:	Uniform flow

Q20.	A 25 cm diameter pipe carries oil of sp.gr. 0.9 at a velocity of 3 m/s. At another
~	section the diameter is 20 cm. Find the velocity at this section.
Option A:	6.68 m/s
Option B:	7.86 m/s
Option C:	4.68 m/s
Option D:	8.50 m/s
Q21.	An orifice is known as large orifice when the head of liquid from the center of orifice is
Option A:	More than 10 times the depth of orifice
Option B:	Less than 10 times the depth of orifice
Option C:	Less than 5 times the depth of orifice
Option D:	More than 5 times the depth of orifice
Q22.	Displacement thickness(δ^*) is given by
Option A:	$\delta^* = \int_0^\delta \left(1 - \frac{U}{u}\right) dy$
Option B:	$\delta^* = \int_0^\delta \frac{u}{U} \left(1 - \frac{U}{u} \right) dy$
Option C:	$\delta^* = \int_0^\delta \left(1 - \frac{U^2}{u^2}\right) dy$
Option D:	$\delta^* = \int_0^{\delta} \left(1 - \frac{U}{u}\right) dy$ $\delta^* = \int_0^{\delta} \frac{u}{U} \left(1 - \frac{U}{u}\right) dy$ $\delta^* = \int_0^{\delta} \left(1 - \frac{U^2}{u^2}\right) dy$ $\delta^* = \int_0^{\delta} \left(1 - \frac{u}{U}\right) dy$
022	$\mathbf{D}_{\mathbf{a}}$
Q23.	Boundary layer thickness (δ) is the distance from the surface of the solid body in the distance from the surface of the solid body in
Ontion A.	the direction perpendicular to flow where the velocity of fluid is equal to
Option A:	Free-stream velocity
Option B:	0.9 times the free-stream velocity
Option C:	0.99 times the free-stream velocity
Option D:	1.99 times the free-stream velocity
Q24.	A flow is said to be Super-Sonic flow if Mach number
Option A:	M = 1.0
Option B:	M<1.0
Option C:	M>1.0
Option D:	No relation between Sonic flow and Mach number
Q25.	Lift force is defined as the force exerted by a flowing fluid on a solid body
Option A:	In the direction of flow
•	
()ption R	Perpendicular to the direction of flow
Option B: Option C:	Perpendicular to the direction of flow At an angle of 45 ⁰ to the direction of flow