Curriculum Scheme: Revised 2016
Examination: Third Year Semester V
Course Code: MEDLO5012 and Course Name: Machining Sciences and Tool Design
Time: 1hour
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	If in an orthogonal turning process, the chip thickness $=0.32 \mathrm{~mm}$, feed $=0.2 \mathrm{~mm} / \mathrm{rev}$. Then the chip thickness ratio will be:
Option A:	2.6
Option B:	3.2
Option C:	1.6
Option D:	0.625
Q2.	Chips formed in orthogonal cutting are in form of.............
Option A:	Discontinuous
Option B:	Coils in tight, flat spiral
Option C:	Long curl
Option D:	Continuous with BUE
Q3.	In an orthogonal turning process, the chip thickness ratio $=0.28 \mathrm{~mm}$, rake angle $=10^{0}$ and frictionn angle $=46^{\circ}$, Then the value of shear angle will be:
Option A:	$30.58{ }^{0}$
Option B:	$26.17{ }^{\circ}$
Option C:	$16.17{ }^{0}$
Option D:	$20.58{ }^{\text {0 }}$
Q4.	To reduce the wear of tool on harder material it should be machined at...................
Option A:	Lower cutting speed \& smaller feed
Option B:	Lower cutting speed \& higher feed
Option C:	Higher cutting speed \& lower feed
Option D:	Higher DOC \& lower feed
Q5.	Secondary deformation zone in metal cutting operation is located at:
Option A:	Shear plane
Option B:	Tool chip interface
Option C:	Tool work piece interface
Option D:	Tool face
Q6.	In ORS system of i- $\alpha-\gamma-\gamma 1-\mathrm{Ce}-\lambda-\mathrm{R}$, symbol Ce stands for ?
Option A:	cutting edge angle
Option B:	back rake angle

Option C:	relief angle
Option D:	shear angle
	If heat transferred to atmosphere is neglected, then the average amount of heat in \% transferred to tool is nearly equal to:
Q7.	70
Option A:	15
Option B:	15
Option C:	20
Option D:	96
Q8.	In milling cutter, the additional space provided behind the relieved land (primary relief) of a cutter to eliminate undesirable contact between the cutter and the workpiece is called as?
Option A:	Undercut
Option B:	Contour
Option C:	Groove
Option D:	Clearance
Q9.	Hardness at elevated temperature called as
Option A:	Softness
Option B:	Brittleness
Option C:	Hot hardness
Option D:	Strength
Q10.	following material increse corrosion resistance property
Option A:	Chromium
Option B:	Iron
Option C:	Silica
Option D:	Sulfur
Q11.	CBN stand for
Option A:	Cubic Boron Nitride
Option B:	Cusic Boron Nitric
Option C:	Carbon Boron Naphete
Option D:	Cubic Boro Nitrate
Q12.	following tool material has lower hardness and wear resistance
Q14.	Flank wear observed on
Option A:	Cermets
Option B:	HSS
Option C:	Carbide
Option D:	CBN
Q13.	crater wear observed on
Option A:	flank face
Option B:	rake face
s:	fide edge

Option A:	flank face
Option B:	rake face
Option C:	Shank
Option D:	Base
Q15.	breaking away of a small piece from the cutting edge of the tool
Option A:	Flacking
Option B:	Chipping
Option C:	Trimming
Option D:	Cutting
Q16.	Which of the following is the tool nomenclature system?
Option A:	Orthogonal Rake System (ORS)
Option B:	Operational Rake System (ORS)
Option C:	Computational Rake System (CRS)
Option D:	Isometric Rake System (IRS)
Q17.	Which of the following is the tool nomenclature system for single point cutting tool?
Option A:	Numerical rake system (NRS)
Option B:	Maximum rake system (MRS)
Option C:	Edge rake system (ERS)
Option D:	Original rake system (ORS)
Q18.	MRS in single point cutting tool nomenclature stands for ?
Option A:	Mass Rake System
Option B:	Minimum Rake System
Option C:	Maximum Rake System
Option D:	Modified rake system
	In milling cutter, the shaft on which the arbor type cutters are mounted or driven is called as? Q19.
Q21.	The surface or surfaces below and adjacent to the cutting edge is called tool. Option A:
Body	
Option B:	Shank
Option D:	Edge
	Flank
Q20.	The point where the side cutting edge and end cutting edge intersect is called as Option A: Option B: Nose Heel

Option A:	Arbor
Option B:	Land
Option C:	Face
Option D:	Cutter body
Q22.	In milling cutter, the cutting edge angle which a helical cutting edge makes with a plane containing the axis of a cylindrical cutter is known as?
Option A:	relief angle
Option B:	Helix angle
Option C:	Shear angle
Option D:	Face angle
Q23.	In milling cutter, the angle in a plane perpendicular to the axis of the cutter, between the face of the tooth and a radial line passing through the cutting edge is known as?
Option A:	radial rake angle
Option B:	helix angle
Option C:	relief angle
Option D:	shear angle
Q24.	The chip and coolant space between the back of one tooth and the face of the following tooth of milling cutter is know as?
Option A:	Flank
Option B:	Land
Option C:	Flute or gash
Option D:	Shank
Q25.	Range of helix angle for plain helical milling cutters is
Option A:	80-90 degree
Option B:	180-190 degree
Option C:	150-160 degree
Option D:	20-30 degree

