University of Mumbai Online Examination 2020

Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: Revised 2016
Examination: Second Year Semester IV
Course Code: ETC ECC403 and Course Name: Linear Integrated Circuits
Time: 1hour
Max. Marks: 50

Note to the students: - All the Questions are compulsory and carry equal marks.

Q1.	Find the output voltage of the log-amplifier
Option A:	$\mathrm{V}_{0}=-(\mathrm{kT} / \mathrm{q}) \times \ln \left(\mathrm{V}_{\mathrm{i}} / \mathrm{V}_{\text {ref }}\right)$
Option B:	$\mathrm{V}_{\mathrm{o}}=-(\mathrm{kT} / \mathrm{q}) \times \ln \left(\mathrm{V}_{\text {ref }} / V_{\mathrm{i}}\right)$
Option C:	$\mathrm{V}_{\mathrm{o}}=-(\mathrm{kT}) \times \ln \left(\mathrm{V}_{\mathrm{i}} / \mathrm{V}_{\text {ref }}\right)$
Option D:	$\mathrm{V}_{\mathrm{o}}=(\mathrm{kT} / \mathrm{q}) \times \ln \left(\mathrm{V}_{\mathrm{i}} / \mathrm{V}_{\text {ref }}\right)$
Q2.	In the common mode,...........
Option A:	Both inputs are grounded
Option B:	The outputs are connected together
Option C:	An identical signal appears on both the inputs
Option D:	The output signal are in-phase
Q3.	In which type of amplifier, the input voltage is amplified by a scaling factor
Option A:	Summing amplifier
Option B:	Averaging amplifier
Option C:	Weighted amplifier
Option D:	Differential amplifier
Q4.	What is a key characteristic of an instrumentation amplifier?
Option A:	High CMRR
Option B:	High output offset
Option C:	High output impedance
Option D:	None of the above
Q5.	Open loop op-amp configuration has
Option A:	Direct network between output and input terminals
Option B:	No connection between output and feedback network
Option C:	No connection between input and feedback network
Option D:	connection between input and feedback network

Q6.	Which is not the internal circuit of operational amplifier?
Option A:	Differential amplifier
Option B:	Level translator
Option C:	Output driver
Option D:	Clamper
Q7.	What will be the phase shift of feedback circuit in RC phase shift oscillator?
Option A:	360° phase shift
Option B:	90° phase shift
Option C:	60° phase shift
Option D:	180° phase shift
Q8.	Which of the following is a stable sine-wave audio-generator?
Option A:	Wein-bridge oscillator
Option B:	Hartley oscillator
Option C:	Armstrong oscillator
Option D:	None of the above
Q9.	The resistor in the peak detector are used to
Option A:	To maintain proper operation
Option B:	Protect op-amp from damage
Option C:	To get shaped non-sinusoidal waveform
Option D:	None of the mentioned
Q10.	How a triangular wave generator is derived from square wave generator?
Option A:	Connect oscillator at the output
Option B:	Connect Voltage follower at the output
Option C:	Connect differential at the output
Option D:	Connect integrator at the output
Q11.	A Schmitt trigger is
Option A:	a comparator with only one trigger point
Option B:	a comparator with hysteresis
Option C:	a comparator with three trigger points
Option D:	none of the above
Q12.	What is the drawback in zero crossing detectors?
Option A:	Low frequency signal and noise at output terminal
Option B:	High frequency signal and noise at input terminal
Option C:	Low frequency signal and noise at input terminal
Option D:	High frequency signal and noise at output terminal
Q13.	The pass band voltage gain of a second order low pass butterworth filter is
Option A:	1.586
Option B:	0.707
Option D:	0.586
8.32	

Q14.	Astable multivibrator operating at 150 Hz has a discharge time of 2.5 m . Find the duty cycle of the circuit.
Option A:	0\%
Option B:	37.5\%
Option C:	75\%
Option D:	95.99\%
Q15.	A 555 timer in monostable application mode can be used for
Option A:	Pulse position modulation
Option B:	Frequency shift keying
Option C:	Digital phase detector
Option D:	Speed control and measurement
Q16.	In a D-A converter with binary weighted resistor, a desired step size can be obtained by
Option A:	Selecting proper value of V_{FS}
Option B:	Selecting proper value of R_{p}
Option C:	Selecting proper value of R_{F}
Option D:	Selecting proper value of R
Q17.	A series switching regulators
Option A:	Improves the efficiency of regulators
Option B:	Improves the flexibility of switching
Option C:	Enhance the response of regulators
Option D:	Improves power Consumption
Q18.	What is the conversion ratio of the phase detector in 565 PLL?
Option A:	0.14
Option B:	0.35
Option C:	0.4458
Option D:	0.7
Q19.	Voltage to frequency conversion factor for VCO is
Option A:	$\mathrm{Kv}=\Delta \mathrm{Vc} / \Delta \mathrm{fo}$
Option B:	$\mathrm{Kv}=\Delta \mathrm{fo} / \Delta \mathrm{Vc}$
Option C:	$\mathrm{Kv}=\Delta \mathrm{fo} \times \Delta \mathrm{Vc}$
Option D:	$\mathrm{Kv}=1 /(\Delta \mathrm{fo} \times \Delta \mathrm{Vc})$
Q20.	What happens when VCO output is 90% out of phase with respect to input signal?
Option A:	Perfect lock
Option B:	Attenuation
Option C:	Shift in phase of comparator
Option D:	Error signal is removed

