Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: Revised 2012
Examination: Second Year Semester III
Course Code: ETC302, Course Name: AE-I

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Which of the following is not a necessary component in a clamper circuit? a) Diode b) Capacitor c) Resistor d) Independent DC Supply
Option A:	Diode
Option B:	Capacitor
Option C:	Resistor
Option D:	Independent DC Supply
Q2.	A crystal diode has
Option A:	one pn junction
Option B:	two pn junctions
Option C:	three pn junctions
Option D:	No pn junction
Q3.	The forward voltage drop across a silicon diode is about
Option A:	2.5 V
Option B:	3 V
Option C:	10 V
Option D:	0.7 V
Q4.	The depletion layer of a PN junction diode has
Option A:	Only free mobile holes
Option B:	Only free mobile electrons
Option C:	Both free mobile holes as well as electrons
Option D:	Neither free mobile electrons nor holes
Q5.	In the output characteristics of a MOSFET with low values of Vds, the value of the on-state resistance is
Option A:	Vds/Ig
Option B:	Vds/Id

Option C:	0
Option D:	∞
Q6.	Consider an ideal MOSFET. If $\mathrm{Vgs}=0 \mathrm{~V}$, then $\mathrm{Id}=$?
Option A:	Zero
Option B:	Maximum
Option C:	Id(on)
Option D:	Idd
Q7.	Which of the following statement is true about FET?
Option A:	It has high output impedance
Option B:	It has high input impedance
Option C:	It has low input impedance
Option D:	It does not offer any resistance
Q8.	For a FET when will maximum current flows?
Option A:	$\mathrm{V}_{\mathrm{gs}}=0 \mathrm{~V}$
Option B:	$\mathrm{V}_{\mathrm{gs}}=0 \mathrm{v}$ and $\mathrm{V}_{\mathrm{ds}}>=\left\|\mathrm{V}_{\mathrm{p}}\right\|$
Option C:	$\mathrm{V}_{\text {DS }}>=\left\|\mathrm{V}_{\mathrm{p}}\right\|$
Option D:	$V_{p}=0$
Q9.	Which of the following is the correct relationship between base and emitter current of a BJT?
Option A:	$\mathrm{I}_{\mathrm{B}}=\beta \mathrm{I}_{\mathrm{E}}$
Option B:	$\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{E}}$
Option C:	$\mathrm{I}_{\mathrm{B}}=(\beta+1) \mathrm{I}_{\mathrm{E}}$
Option D:	$\mathrm{I}_{\mathrm{E}}=(\beta+1) \mathrm{I}_{\mathrm{B}}$
Q10.	At what region of operation is the base-emitter junction forward biased and the base-collector junction reverse biased?
Option A:	Saturation
Option B:	Linear
Option C:	active
Option D:	Cutoff
Q11.	For the typical transistor amplifier in the active region, V_{CE} is usually about \qquad \% to \qquad \% VCC
Option A:	10,60
Option B:	25, 75
Option C:	40,90
Option D:	10,75
Q12.	Reducing all dc sources to zero is one of the steps in getting the

Option A:	DC equivalent circuit
Option B:	AC equivalent circuit
Option C:	Complete amplifier circuit
Option D:	Voltage divider biased circuit
Q13.	The phase difference between the output and input voltages of a CE amplifier is......degrees
Option A:	180
Option B:	0
Option C:	90
Option D:	45
Q14.	What is trans-conductance?
Option A:	Ratio of change in drain current to change in collector current
Option B:	Ratio of change in drain current to change in gate to source voltage
Option C:	Ratio of change in collector current to change in drain current
Option D:	Ratio of change in collector current to change in gate to source voltage
Q15.	The slope obtained in $\mathrm{V}_{G S}$ vs I_{D} was 0.002 . What is the value ofg ${ }_{\text {? }}$?
Option A:	1 l
Option B:	2
Option C:	0.002
Option D:	0
Q16.	Which of the following equations gives the relation between I_{D} and V_{gs} ?
Option A:	$\mathrm{I}_{\mathrm{D}}=\mathrm{l}_{\mathrm{DSS}}\left(1-\mathrm{V}_{\mathrm{gs}} / \mathrm{V}_{\mathrm{p}}\right)^{2}$
Option B:	$\mathrm{I}_{\mathrm{D}}=\mathrm{l}_{\text {DSS }}\left(1-\mathrm{V}_{\mathrm{gs}} / V_{\mathrm{p}}\right)^{1}$
Option C:	$\mathrm{I}_{\mathrm{D}}=\mathrm{l}_{\mathrm{DSS}}\left(1-\mathrm{V}_{\mathrm{gs}} / \mathrm{V}_{\mathrm{p}}\right)^{3}$
Option D:	$\mathrm{I}_{\mathrm{D}}=\mathrm{l}_{\mathrm{DSS}}\left(1-\mathrm{V}_{\mathrm{gs}} / \mathrm{V}_{\mathrm{p}}\right)^{4}$
Q17.	For a fixed bias circuit the drain current was 1 mA , what is the value of source current
Option A:	OmA
Option B:	1 mA
Option C:	2 mA
Option D:	4 mA
Q18.	What will happen if values of R_{s} increase?
Option A:	V_{gs} Decreases
Option B:	V_{gs} Increases
Option C:	V_{gs} Remains the same
Option D:	$\mathrm{V}_{\mathrm{gs}}=0$
Q19.	A common gate amplifier has
Option A:	low input impedance

Option B:	no impedance
Option C:	infinite input impedance
Option D:	high
Q20.	Which of the following is an expression for g_{mo} ?
Option A:	$\mathrm{gm}_{\mathrm{m}}=\mathrm{I}_{\text {Dss }} / \mathrm{V}_{\mathrm{p}}$
Option B:	$\mathrm{gmo}_{\text {m }}=\mathrm{I}_{\text {DSs }} / 5 \mathrm{~V}_{\mathrm{p}}$
Option C:	$\mathrm{gm}_{\mathrm{m} 0}=\mathrm{l}_{\text {DSs }} / 2 \mathrm{~V}_{\mathrm{p}}$
Option D:	$\mathrm{g}_{\mathrm{m} 0}=2 \mathrm{l}_{\text {Dss }} / / \mathrm{V}_{\mathrm{p}} \mid$
Q21.	An oscillator converts
Option A:	ac. power into d.c. power
Option B:	dc. power into a.c. power
Option C:	mechanical power into a.c. power
Option D:	Dc power to dc power
Q22.	In a phase shift oscillator, we use RC sections
Option A:	Two
Option B:	Three
Option C:	Four
Option D:	No
Q23.	An oscillator differs from an amplifier because it
Option A:	Has more gain
Option B:	Requires no input signal
Option C:	Requires no d.c. supply
Option D:	Always has the same input
Q24.	For an oscillator to properly start, the gain around the feedback loop must initially be
Option A:	1
Option B:	Greater than 1
Option C:	Less than 1
Option D:	Equal to attenuation of feedback circuit
Q25. is a fixed frequency oscillator
Option A:	Phase-shift oscillator
Option B:	Hartely-oscillator
Option C:	Colpitt's oscillator
Option D:	Crystal oscillator

