0912_R16_COMP_III_CSC304_Sample_Questions

Q1.	Operating point represents
Option A	Values of I_{C} and $\mathrm{V}_{\text {CE }}$ when signal is applied
Option B	The magnitude of signal
Option C	Zero signal values of I_{C} and $\mathrm{V}_{\text {CE }}$
Option D	AC signal values
Q2.	For proper amplification by a transistor circuit, the operating point should be located at the \qquad of the DC load line
Option A	The end point
Option B	Middle
Option C	The maximum current point
Option D	Below the cut-off
Q3.	In voltage divider bias, operating point is $3 \mathrm{~V}, 2 \mathrm{~mA}$. If $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=2.2 \mathrm{k} \Omega$, what is the value of R_{E} ?
Option A	2000Ω
Option B	1400Ω
Option C	800Ω
Option D	1600Ω
Q4.	In voltage divider bias, $\mathrm{V}_{\mathrm{CC}}=25 \mathrm{~V} ; \mathrm{R}_{1}=10 \mathrm{k} \Omega ; \mathrm{R}_{2}=2.2 \mathrm{~V} ; \mathrm{R}_{\mathrm{C}}=3.6 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{E}}=1 \mathrm{k} \Omega$. What is the emitter voltage?
Option A	6.7 V
Option B	5.3 V
Option C	4.9 V
Option D	3.8 V
Q5.	A silicon transistor is biased with base resistor method. If $\beta=100, \mathrm{~V}_{\mathrm{BE}}=0.7 \mathrm{~V}$, zero signal collector current $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$, what is the value of the base resistor R_{B} ?
Option A	$105 \mathrm{k} \Omega$
Option B	$530 \mathrm{k} \Omega$
Option C	$315 \mathrm{k} \Omega$
Option D	$350 \mathrm{k} \Omega$
Q6.	An LC oscillator cannot be used to produce frequencies
Option A	High
Option B	Audio
Option C	Very low
Option D	Very high
Q7.	The piezoelectric effect in a crystal is

Option A	A voltage developed because of mechanical stress
Option B	A change in resistance because of temperature
Option C	A change in frequency because of temperature
Option D	A voltage developed because of electrical signal
Q8.	The crystal oscillator frequency is very stable due to of the crystal
Option A	Rigidity
Option B	Vibrations
Option C	Low Q
Option D	High Q
Q9.	A second condition of Barkhausen criteria for oscillations is
Option A	A gain of 1 around the feedback loop
Option B	No gain around the feedback loop
Option C	The attention of the feedback circuit must be one-third
Option D	The feedback circuit must be capacitive
Q10.	Which of the following amplifier class have highest linearity and lowest distortion?
Option A	Class A
Option B	Class B
Option C	Class C
Option D	Class AB
Q11.	Which type of power amplifier is biased for operation at greater than 180° of the cycle?
Option A	Class A
Option B	Class B
Option C	Class C
Option D	Class AB
Q12.	The ability of the receiver to select the wanted signals among the various incoming signals is termed as
Option A	Sensitivity
Option B	Selectivity
Option C	Stability
Option D	Fidelity
Q13.	Standard intermediate frequency used for AM receiver is
Option A	455 MHz
Option B	455 kHz
Option C	455 Hz
Option D	45.5 kHz

Q14.	Calculate the bandwidth occupied by a DSB signal when the modulating frequency lies in the range from 100 Hz to 10 KHz .
Option A	28 KHz
Option B	24.5 KHz
Option C	38.6 KHz
Option D	19.8 KHz
Q15.	The function of multiplexing is
Option A	To reduce the bandwidth of the signal to be transmitted
Option B	To combine multiple data streams over a single data channel
Option C	To allow multiple data streams over multiple channels in a prescribed format
Option D	To match the frequencies of the signal at the transmitter as well as the receiver
Q16.	AM wave may be represented as $\mathrm{E}(\mathrm{t})$ cos $\omega_{\mathrm{c}} \mathrm{t}$ where $\mathrm{E}(\mathrm{t})$ is
Option A	Envelope of the AM wave
Option B	Carrier signal
Option C	Amplitude of modulating signal
Option D	Modulating signal
Q17.	Advantage of using direct method for generation of FM signal is
Option A	It gives high stability to FM signal frequency
Option B	Distortion free FM signal is generated
Option C	High power FM generation is possible
Option D	Low power FM generation is possible
Q18.	The digital modulation technique in which the step size is varied according to the variation in the slope of the input is called
Option A	Delta modulation
Option B	PCM
Option C	Adaptive delta modulation
Option D	PAM
Q19.	The information rate R for given average information $\mathrm{H}=2.0$ for analog signal band limited to B Hz is
Option A	$8 \mathrm{~B} \mathrm{bits} / \mathrm{sec}$
Option B	$4 \mathrm{~B} \mathrm{bits} / \mathrm{sec}$
Option C	$2 \mathrm{~B} \mathrm{bits/sec}$
Option D	16 B bits/sec
Q20.	The information I contained in a message with probability of occurrence is given by (k is constant).
Option A	$\mathrm{I}=\mathrm{k} \log _{2} 1 / \mathrm{P}$
Option B	$\mathrm{I}=\mathrm{k} \log _{2} \mathrm{P}$
Option C	$\mathrm{I}=\mathrm{k} \log _{2} 1 / 2 \mathrm{P}$
Option D	$\mathrm{I}=\mathrm{k} \log _{2} 1 / \mathrm{P}^{2}$

Q21.	The Op-amp can amplify
Option A	a.c. signals only
Option B	a.c. signals only
Option C	both a.c. and d.c. signals
Option D	neither d.c. nor a.c. signals
Q22.	The input stage of an Op-amp is usually a
Option A	differential amplifier
Option B	class B push-pull amplifier
Option C	CE amplifier
Option D	swamped amplifier
Q23.	For an Op-amp with negative feedback, the output is
Option A	equal to the input
Option B	increased
Option C	fed back to the inverting input
Option D	fed back to the noninverting input
Q24.	In PCM, the parameter varied in accordance with the amplitude of the modulating signal is
Option A	Amplitude
Option B	Frequency
Option C	Phase
Option D	Code
Q25.	Granular noise occurs when
Option A	Step size is too small
Option B	Step size is too large
Option C	There is interference from the adjacent channel
Option D	Bandwidth is too large

