Program: Computer Engineering
 Curriculum Scheme: Rev2016
 Examination: Second Year Sem - III
 Course Code: CSC303 and Course Name: Discrete Mathematics

Sample Question

For the students:- All the Questions are compulsory and carry equal marks .

Q1.	What is the Cartesian product of $\mathrm{A}=\{1,2\}$ and $\mathrm{B}=\{\mathrm{a}, \mathrm{b}\} ?$
Option A:	$\{(1, \mathrm{a}),(1, \mathrm{~b}),(2, \mathrm{a}),(\mathrm{b}, \mathrm{b})\}$
Option B:	$\{(1,1),(2,2),(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{b})\}$
Option C:	$\{(1, \mathrm{a}),(2, \mathrm{a}),(1, \mathrm{~b}),(2, \mathrm{~b})\}$
Option D:	$\{(1,1),(\mathrm{a}, \mathrm{a}),(2, \mathrm{a}),(1, \mathrm{~b})\}$
Q2.	Let the set A is $\{1,2,3\}$ and B is $\{2,3,4\}$. Then the set $\mathrm{A}-\mathrm{B}$ is?
Option A:	$\{1,-4\}$
Option B:	$\{1,2,3\}$
Option C:	$\{1\}$
Option D:	$\{2,3\}$

Q3.	Two sets A and B contains a and b elements respectively. If power set of A contains 16 more elements than that of B , value of ' b ' and ' a ' are
Option A:	4,5
Option B:	6,7
Option C:	2,3
Option D:	None of the mentioned
Q4.	If set C is $\{1,2,3,4\}$ and $\mathrm{C}-\mathrm{D}=\Phi$ then set D can be
Option A:	$\{1,2,4,5\}$
Option B:	$\{1,2,3\}$
Option C:	$\{1,2,3,4,5\}$
Option D:	None of the mentioned
Q5.	Which of the following function $\mathrm{f}: \mathrm{Z} \mathrm{X} \mathrm{Z} \rightarrow \mathrm{Z}$ is not onto?
Option A:	$\mathrm{f}(\mathrm{a}, \mathrm{b})=\mathrm{a}+\mathrm{b}$
Option B:	$\mathrm{f}(\mathrm{a}, \mathrm{b})=\mathrm{a}$
Option C:	$\mathrm{f}(\mathrm{a}, \mathrm{b})=\|\mathrm{b}\|$
Option D:	$\mathrm{f}(\mathrm{a}, \mathrm{b})=\mathrm{a}-\mathrm{b}$
Q6.	Let f and g be the function from the set of integers to itself, defined by $\mathrm{f}(\mathrm{x})=$ $2 \mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=3 \mathrm{x}+4$. Then the composition of f and g is Option A: $6 \mathrm{x}+9$ Option B: Option C: $6 \mathrm{x}+7$ $\mathrm{xx}+6$

Option D:	$6 \mathrm{x}+8$
Q7.	How many binary relations are there on a set S with 9 distinct elements?
Option A:	2^{90}
Option B:	2^{100}
Option C:	2^{81}
Option D:	2^{60}
Q8.	The transitive closure of the relation $\{(0,1),(1,2),(2,2),(3,4),(5,3),(5,4)\}$ on the set $\{1,2,3,4,5\}$ is
Option A:	$\{(0,1),(1,2),(2,2),(3,4)\}$
Option B:	$\{(0,0),(1,1),(2,2),(3,3),(4,4),(5,5)\}$
Option C:	$\{(0,1),(1,1),(2,2),(5,3),(5,4)\}$
Option D:	$\{(0,1),(0,2),(1,2),(2,2),(3,4),(5,3),(5,4)\}$
Q9.	Let R_{1} and R_{2} be two equivalence relations on a set. Is $\mathrm{R}_{1} \cup \mathrm{R}_{2}$ an equivalence relation?
Option A:	an equivalence relation
Option B:	reflexive closure of relation
Option C:	not an equivalence relation
Option D:	partial equivalence relation
Q10.	Let a set $\mathrm{S}=\{2,4,8,16,32\}$ and $<=$ be the partial order defined by $\mathrm{S}<=\mathrm{R}$ if a divides b. Number of edges in the Hasse diagram of is Option A: Option B: Option C: Option D:

Q11.	Suppose $X=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and π_{1} is the partition of $\mathrm{X}, \pi_{1}=\{\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{d}\}$. The number of ordered pairs of the equivalence relations induced by
Option A:	15
Option B:	10
Option C:	34
Option D:	5
Q12.	The relation \leq is a partial order if it is
Option A:	reflexive, antisymmetric and transitive
Option B:	reflexive, symmetric
Option C:	asymmetric, transitive
Option D:	irreflexive and transitive
Q13.	A directed graph or digraph can have directed cycle in which
Option A:	starting node and ending node are different

Option B:	starting node and ending node are same
Option C:	minimum four vertices can be there

Option D:	ending node does not exist
Q14.	What is a complete digraph?
Option A:	connection of nodes without containing any cycle
Option B:	connecting nodes to make at least three complete cycles
Option C:	start node and end node in a graph are same having a cycle
Option D:	connection of every node with every other node including itself in a digraph
Q15.	G is an undirected graph with n vertices and 26 edges such that each vertex of G has a degree at least 4. Then the maximum possible value of n is
Option A:	7
Option B:	43
Option C:	13
Option D:	10
Q16.	A Poset in which every pair of elements has both a least upper bound and a greatest lower bound is termed as Option A:
sublattice	
Option B:	lattice
Option D:	trail
	walk
Q17.	The maximum number of edges in a bipartite graph on 14 vertices is
Option A:	56
Option B:	14
Option C:	49
Option D:	87
	Q18.
Option A:	Which of the following relations is the reflexive relation over the set $\{1,2,3$, $4\} ?$
Option B:	$\{(1,1),(2,2),(2,3)\}$

Option C:	$\{,(1,1),(1,2),(2,1),(2,3),(3,4)$
Option D:	$\{(0,1),(1,1),(2,3),(2,2),(3,4),(3,1)$
Q19.	For $\mathrm{a}, \mathrm{b} \in \mathrm{Z}$ define $\mathrm{a} \mid \mathrm{b}$ to mean that a divides b is a relation which does not satisfy \qquad
Option A:	irreflexive and symmetric relation
Option B:	reflexive relation and symmetric relation
Option C:	transitive relation
Option D:	symmetric relation
Q20.	Let P and Q be statements, then $\mathrm{P}<->\mathrm{Q}$ is logically equivalent to
Option A:	$\mathrm{P}<->\sim \mathrm{Q}$
Option B:	$\sim \mathrm{P}<->\mathrm{Q}$
Option C:	$\sim \mathrm{P}<->\sim \mathrm{Q}$
Option D:	None of the mentioned
Q21.	Let P, Q, R be true, false true, respectively, which of the following is true?
Option A:	$\mathrm{P} \wedge \mathrm{Q} \wedge \mathrm{R}$
Option B:	$\mathrm{P} \wedge \sim \mathrm{Q} \wedge \sim \mathrm{R}$
Option C:	Q->(P^R)
Option D:	$\mathrm{P}->(\mathrm{Q} \wedge \mathrm{R})$
Q22.	The statement ($\sim \mathrm{P}<->\mathrm{Q}$) $\wedge \sim \mathrm{Q}$ is true
Option A:	P: True Q: False
Option B:	P: True Q: True
Option C:	P: False Q: True
Option D:	P: False Q: False
Q23.	Which of the following is De-Morgan's law?
Option A:	$\mathrm{P} \wedge(\mathrm{Q} \vee \mathrm{R}) \Xi(\mathrm{P} \wedge \mathrm{Q}) \mathrm{v}(\mathrm{P} \wedge \mathrm{R})$
Option B:	$\sim(\mathrm{P} \wedge \mathrm{R}) \Xi \sim \mathrm{P} \vee \sim \mathrm{R}, \sim(\mathrm{P} \vee \mathrm{R}) \Xi \sim \mathrm{P} \wedge \sim \mathrm{R}$
Option C:	$\mathrm{P} \vee \sim \mathrm{P} \Xi$ True, $\mathrm{P} \wedge \sim \mathrm{P} \Xi$ False
Option D:	None of the mentioned
Q24.	Which of the following satisfies commutative law?
Option A:	\wedge
Option B:	v
Option C:	\leftrightarrow
Option D:	All of the mentioned

Q25.	If P is always against the testimony of Q, then the compound statement $\mathrm{P} \rightarrow(\mathrm{P}$ $\mathrm{v} \sim \mathrm{Q})$ is a
Option A:	Tautology
Option B:	Contradiction
Option C:	Contingency
Option D:	None of the mentioned

