Program: Computer Engineering Curriculum Scheme: Rev2016 Examination: Second Year Sem - III Course Code: CSC303 and Course Name: Discrete Mathematics

Sample Question

Q1. What is the Cartesian product of $A = \{1, 2\}$ and $B = \{a, b\}$? Option A: $\{(1, a), (1, b), (2, a), (b, b)\}$ $\{(1, 1), (2, 2), (a, a), (b, b)\}$ Option B: Option C: $\{(1, a), (2, a), (1, b), (2, b)\}\$ Option D: $\{(1, 1), (a, a), (2, a), (1, b)\}$ Q2. Let the set A is $\{1, 2, 3\}$ and B is $\{2, 3, 4\}$. Then the set A – B is? Option A: $\{1, -4\}$ Option B: $\{1, 2, 3\}$ Option C: {1} Option D: $\{2, 3\}$

Q3. Two sets A and B contains a and b elements respectively. If power set of A contains 16 more elements than that of B, value of 'b' and 'a' are Option A: 4, 5 Option B: 6, 7 Option C: 2.3 Option D: None of the mentioned Q4. If set C is $\{1, 2, 3, 4\}$ and $C - D = \Phi$ then set D can be Option A: $\{1, 2, 4, 5\}$ Option B: $\{1, 2, 3\}$ Option C: $\{1, 2, 3, 4, 5\}$ Option D: None of the mentioned 05. Which of the following function f: $Z X Z \rightarrow Z$ is not onto? Option A: $\mathbf{f}(\mathbf{a}, \mathbf{b}) = \mathbf{a} + \mathbf{b}$ Option B: f(a, b) = aOption C: f(a, b) = |b|Option D: f(a, b) = a - bQ6. Let f and g be the function from the set of integers to itself, defined by f(x) =2x + 1 and g(x) = 3x + 4. Then the composition of f and g is Option A: 6x + 9Option B: 6x + 7Option C: 6x + 6

For the students:- All the Questions are compulsory and carry equal marks .

Option D:	6x + 8
Q7.	How many binary relations are there on a set S with 9 distinct elements?
Option A:	2 ⁹⁰
Option B:	2^{100}
Option C:	2^{81}
Option D:	2^{60}
Q8.	The transitive closure of the relation {(0,1), (1,2), (2,2), (3,4), (5,3), (5,4)} on the set {1, 2, 3, 4, 5} is
Option A:	$\{(0,1), (1,2), (2,2), (3,4)\}$
Option B:	{(0,0), (1,1), (2,2), (3,3), (4,4), (5,5)}
Option C:	$\{(0,1), (1,1), (2,2), (5,3), (5,4)\}$
Option D:	$\{(0,1), (0,2), (1,2), (2,2), (3,4), (5,3), (5,4)\}$
Q9.	Let R_1 and R_2 be two equivalence relations on a set. Is $R_1 \cup R_2$ an equivalence relation?
Option A:	an equivalence relation
Option B:	reflexive closure of relation
Option C:	not an equivalence relation
Option D:	partial equivalence relation
Q10.	Let a set S = {2, 4, 8, 16, 32} and <= be the partial order defined by S <= R if a divides b. Number of edges in the Hasse diagram of is
Option A:	6
Option B:	5
Option C:	9
Option D:	4

Q11.	Suppose X = {a, b, c, d} and π_1 is the partition of X, π_1 = {{a, b, c}, d}. The number of ordered pairs of the equivalence relations induced by
Option A:	15
Option B:	10
Option C:	34
Option D:	5
Q12.	The relation \leq is a partial order if it is
Option A:	reflexive, antisymmetric and transitive
Option B:	reflexive, symmetric
Option C:	asymmetric, transitive
Option D:	irreflexive and transitive
Q13.	A directed graph or digraph can have directed cycle in which
Option A:	starting node and ending node are different

Option B:	starting node and ending node are same
Option C:	minimum four vertices can be there

Option D:	ending node does not exist
Q14.	What is a complete digraph?
Option A:	connection of nodes without containing any cycle
Option B:	connecting nodes to make at least three complete cycles
Option C:	start node and end node in a graph are same having a cycle
Option D:	connection of every node with every other node including itself in a digraph
Q15.	G is an undirected graph with n vertices and 26 edges such that each vertex of G has a degree at least 4. Then the maximum possible value of n is
Option A:	7
Option B:	43
Option C:	13
Option D:	10
Q16.	A Poset in which every pair of elements has both a least upper bound and a greatest lower bound is termed as
Option A:	sublattice
Option B:	lattice
Option C:	trail
Option D:	walk
Q17.	The maximum number of edges in a bipartite graph on 14 vertices is
Option A:	56
Option B:	14
Option C:	49
Option D:	87
Q18.	Which of the following relations is the reflexive relation over the set {1, 2, 3 4}?
Option A:	$\{(0,0), (1,1), (2,2), (2,3)\}$
Option B:	$\{(1,1), (1,2), (2,2), (3,3), (4,3), (4,4)\}$

Option C:	{,(1,1), (1,2), (2,1), (2,3), (3,4)
Option D:	$\{(0,1), (1,1), (2,3), (2,2), (3,4), (3,1)$
Q19.	For a, $b \in Z$ define a b to mean that a divides b is a relation which does not satisfy
Option A:	irreflexive and symmetric relation
Option B:	reflexive relation and symmetric relation
Option C:	transitive relation
Option D:	symmetric relation
Q20.	Let P and Q be statements, then P<->Q is logically equivalent to
Option A:	P<->~Q
Option B:	~P<->Q
Option C:	~P<->~Q
Option D:	None of the mentioned
Q21.	Let P, Q, R be true, false true, respectively, which of the following is true?
Option A:	ΡΛQΛR
Option B:	PA~QA~R
Option C:	$Q \rightarrow (P \land R)$
Option D:	$P \rightarrow (Q \land R)$
Q22.	The statement ($\sim P < -> Q$) $\land \sim Q$ is true when?
Option A:	P: True Q: False
Option B:	P: True Q: True
Option C:	P: False Q: True
Option D:	P: False Q: False
Q23.	Which of the following is De-Morgan's law?
Option A:	$P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$
Option B:	$\sim (P \land R) \equiv \sim P \lor \sim R, \sim (P \lor R) \equiv \sim P \land \sim R$
Option C:	P v \sim P \equiv True, P $\wedge \sim$ P \equiv False
Option D:	None of the mentioned
Q24.	Which of the following satisfies commutative law?
Option A:	Λ
Option B:	v
- 1	
Option C:	\leftrightarrow

Q25.	If P is always against the testimony of Q, then the compound statement $P \rightarrow (P)$
	v ~Q) is a
Option A:	Tautology
Option B:	Contradiction
Option C:	Contingency
Option D:	None of the mentioned