These are sample MCQs to indicate pattern, may or may not appear in examination

University of Mumbai
 Online Examination 2020

Program: SE Computer Engineering Curriculum Scheme: Revised 2016
Examination: Second Year Semester III
Course Code: CSC302 and Course Name: Digital Logic Design and Analysis Time: 1hour Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Which is a correct statement?
Option A:	Digital signal has low noise immunity than analog signal.
Option B:	Analog signal consumes more power during transmission than digital signal.
Option C:	Digital system is more accurate compared to analog system.
Option D:	Digital system is easily prone to errors.

Q2.	$\ldots .$. this input is forbidden from SR flip flop.
Option A:	00
Option B:	01
Option C:	10
Option D:	11

Q3.	Race around condition occurs in_____flip flop.
Option A:	SR
Option B:	JK
Option C:	D
Option D:	T

Q4.	What is 2's complement of 1000 1100?
Option A:	01110011
Option B:	01110001
Option C:	01110100
Option D:	01110101

Q5.	If input lines are N and Selection lines are M of multiplexer, how to represent relationship between them?
Option $A:$	$N=\log M$ (base 2)
Option $\mathrm{B}:$	$M=\log N$ (base 2)
Option C:	$N=\log M$ (base 10)
Option $\mathrm{D}:$	$M=\log \mathrm{M}$ (base 10)

Q6.	What is a correct statement?
Option A:	AND gate has same output as XNOR
Option B:	OR gate has same output as XNOR
Option C:	NAND gate has same output as bubbled OR
Option D:	NAND gate has same output as bubbled XOR

Q7.	In base (2's, 8 's, 16 's) complement subtraction, after adding base complement of subtrahend to minuend, if carry is generated, then....

	Oparry is added to the sum, to get answer in original form.
Option $\mathrm{B}:$	carry is ignored.
Option $\mathrm{C}:$	result is negative so calculate its base complement
Option D:	result is positive and answer is not in its original form

Q8.	In (base-1) complement subtraction(1's,7's and 15's C subtraction), after adding (base-1) complement of subtrahend to minuend, if carry is generated, then
Option A:	carry is added to the sum, to get answer in original form.
Option B:	result is positive and answer is in its original form
Option C:	result is negative so calculate its (base-1) complement
Option D:	carry is ignored

Q9.	In half adder, carry is generated by
Option A:	ORing two input operands
Option B:	XORing two input operands
Option C:	XNORing two input operands
Option D:	ANDing two input operands

Q10.	Which is correct statement regarding decoder?
Option A:	Number of input lines are more than number of output lines.
Option B:	Input lines are active low
Option C:	Output lines are active low
Option D:	Any number of output lines decoder can have , irrespective of number of input lines.

Q11.	Full adder is implemented using half adder by using
Option A:	one half adder and one AND gate
Option B:	two half adders and one OR gate
Option C:	one half adder and one OR gate
Option D:	two half adders and one AND gate

Q12.	Binary code for (1110)gray code is
Option A:	1010
Option B:	1011
Option C:	1100
Option D:	0101

Q13.	Gray code for binary code (1011) is
Option A:	1010
Option B:	0111
Option C:	1110
Option D:	0101

Q14.	What is result of (23) 4 + (32) 4, (add two numbers from base 4)?
Option A:	$(31) 4$
Option B:	$(21) 4$
Option C:	$(121) 4$
Option D:	$(131) 4$

Q15.	What is octal representation of (45.2)10 ?
Option A:	55.3641
Option B:	55.1463
Option C:	45.1463
Option D:	54.3641

Q16.	What is hexadecimal representation of $(376) 8$?
Option A:	(FE)h
Option B:	(BE)H
Option C:	(EF)H
Option D:	(EB)H

Q17.	In Sequential logic circuit,
Option A:	output depends only on input
Option B:	output depends on input and previous output
Option C:	output depends on previous output only
Option D:	None of the above

Q18.	In Combinational logic circuit,
Option A:	output depends only on input
Option B:	output depends on input and previous output
Option C:	output depends on previous output only
Option D:	None of the above

Q19.	D flip flop is obtained by
Option A:	Short circuiting JK ends
Option B:	inverting J to provide input K
Option C:	When JK=00
Option D:	When JK=11

Q20.	Race around condition occurs, when JK flip flop is
Option A:	Positive edge triggered
Option B:	Negative edge triggered
Option C:	Level triggered
Option D:	switching time is greater than clock cycle time

Q21.	What is decimal equivalent of (101 1111)?
Option A:	80
Option B:	95
Option C:	86
Option D:	65

Q22.	What is excess 3 code of 1100
Option A:	11000011
Option B:	1111
Option C:	00111100

Q23.	What is radix of numbering system which supports $0,1,2,3$?
Option A:	3
Option B:	4
Option C:	5
Option D:	6

Q24.	What is the result of $(45) 8+(23) 8 ?$
Option A:	$(67) 8$
Option B:	$(70) 8$
Option C:	$(66) 8$
Option D:	$(77) 8$

Q25.	What is $(78) \mathrm{H}+(\mathrm{B} 9) \mathrm{H}$?
Option A:	$(131) \mathrm{H}$
Option B:	$(31) \mathrm{H}$
Option C:	$(13 \mathrm{~A}) \mathrm{H}$
Option D:	(A31)H

