	MCQ SET	Course Code and Name: (AEC 5 Transfer	503) Heat		
		Institute Name: RMCET, Ambav (Devrukh)			
Class: TE Automobi le		Department : Automobile Engineering			
Semester : V		Name of Subject Incharge: Mr. Rahul D. Belekar			
	QUESTION	C	PTIONS		
	QUEUTION	Α	В	С	D

1	Which of the following statement is wrong?	The heat transfer in liquid and gases takes place according to convection.	.The amount of heat flow through a body is depende nt upon the material of the body.	The thermal conductivi ty of solid metals increases with rise in temperatu re,	Logarith mic mean temperat ure differenc e is not equal to the arithmetic mean temperat ure
2	Fourier's law of heat conduction is valid for	One dimensional cases only	Two dimensio nal cases only	Three dimension al cases only	Regular surfaces having non- uniform temperat ure gradients
3	Unit of the rate of heat transfer is	Joule	Newton	Pascal	Watt

4	Which of the following is the best conductor of heat?	Air	Water	Plastic	Aluminu m
5	Which of the following is the worst conductor of heat in the group?	Air	Plastic	A vacuum	Aluminu m
6	SI unit of specific heat capacity is:	kg°C	j/kg°C	j/kg°	kg/j

7	Bad conductors are also called	convectors	insulators	radiant	termaids
8	Metals are good conductors of heat because	Their atoms collide frequently	Their atoms are relatively far apart	They contain free electrons	They have high density
9	Due to which of the following reasons cork is a good insulator?	It is porous	Its density is low	It can be powdered	It has less electrons

10	A plane wall is 150 mm thick & its wall area is 4.5 m^2 . If its conductivi ty is 9.35 W/m ⁰ c & surface temperatur es are steady at 150 ⁰ C & 45 ⁰ C, then the heat	29452.5 W	29452.5 W/m ²	35452.5 W/m ²	35452.5 W
	transfer				
	rate 1s				

11	A spherical shaped vessel of inner & outer radius are 0.61 & 0.7 m. Find the rate of heat leakage, if the temperatur e difference between the inner & outer surface is 220°C. Thermal conductivi ty of the material of the sphere is 0.083 W/m°C.	1388.67W	1188.67 W	1088.67W	1288.67 W	
12	The formula for Heat transfer through hollow sphere is	$Q = (r_2 - r_1)/\ln(r_2/r_1)$	$Q = \frac{\frac{(t_1 - t_2)}{\frac{10}{2\pi N}}}{2\pi N}$	$Q = \frac{\frac{(t_1 - t_2)}{2}}{\sqrt{1 - \frac{1}{2}}}$	$Q = \frac{\frac{(t_1 - t_2)}{(t_1 - t_1)}}{4t_1}$	2) 1) 2

13	Calculate	0.06143m	0.07143	0.08143m	0.09143
	the critical		m		m
	radius of				
	insulation				
	for				
	asbestos				
	(k=0.172				
	W/m.k)				
	surroundin				
	g a pipe &				
	exposed to				
	room air at				
	300 k with				
	h=2.8				
	W/m.k.				

14	What is the value of characterist ics length for cube of Side a	a/8	a/2	a/4	a/6
15	A gold ring (k = 65 W/m K) measuring 15 X10 X60 cm is exposed to a surface where h = 11.5 W/m2 K. Find the value of biot number	6.54	0.78	1.24	0.48
16	Numerical methods in Heat transfer is applied because	It is simple to apply it	Solution of Complex geometry can be solved	It is very fast	it is cheap and requires less equipment

17	Which of the following can be value a of Efficiency of fin	-10	0.7	101	1.547
18	Which of the following is an example of lump system analysis?	Cooling of metal billets in steel works	Heating of an ingot in an furnace	Cooling of bars	Heating or cooling of fine thermocou ple wire due to change in ambient temperatu re

19	which number is product of Grashoff number and Prandtl number	Peclet number	stanton number	Rayleigh number	reynolds number
20	The ratio of dynamic viscosity to density is?	kinemetic viscosity	kinemati cs	dynamics	kinetic viscosity
21	The units of Nusselt are	1/K	Wm	Km	no units
22	the ratio of inertia force to viscous force is which number	Peclet number	stanton number	Prandtl number	reynolds number

23	The Prandtl number for heavy oil is	Pr>100000	Pr <100000	Pr >10	Pr <10
24	Determine the reynolds number of water having dynamic viscosity of 0.0000001 6 meter square /sec flowing through a pipe of inner diameter 0.75cm at velocity of 5m/s	5421	354789	10000	234375

25	What is	Stefan-Boltzmann equation	Planck's	Wien's	Rayleigh-
	the basic		equation	equation	Jeans
	equation				formula
	of thermal				
	radiation				
	from				
	which all				
	other				
	equations				
	of				
	radiation				
	can be				
	derived?				

26	What is the shape factor of a hemispher ical body placed on a flat surface with respect to itself?	Zero	0.25	0.5	1
27	A grey body is one whose absorptivit y	varies with temperature	varies with waveleng th of the incident ray	is equal to its emissivity	does not vary with temperat ure and waveleng th of the incident ray
28	What is the relation between reflectivity (ρ) , absorptivit y (α) and transmissi vity (τ) ?	$\rho - \alpha + \tau = 1$	$\rho + \alpha - \tau = 1$	$\rho + \alpha + \tau = 1$	$\rho - \alpha - \tau$ = 1
29	Absorptivi ty of a body will be equal to its emissivity	at all temperature	at one particular temperat ure	when system is under thermal equilibriu m	at critcal temperat ure

30	Multipass heat exchanger s are used	Because of simplicity of fabrication	For low heat load	To obtain higher heat transfer co- efficient and shorter tube	To reduce the pressure drop
31	In a shell and tube heat exchanger, the shell side fluid velocity can"t be changed by changing the	Tube layout	Tube diameter	Tube pitch	Number of baffles
32	Baffles are provided in heat exchanger s to increase the	Fouling factor	heat transfer area	heat transfer coefficient	heat transfer rate
33	Dropwise condensati on occurs on surfaces.	clean and dirt free	smooth clean	contamina ted cooling	polished
34	Heat exchanger tubes are never made of	Plain carbon steel	Stainless steel	lead	copper