University of Mumbai

Examination 2020 under cluster 8 (Lead College: PHCET, Rasayani)

Program: Automobile Engineering
Curriculum Scheme: Rev 2012 / 2016
Examination: Second Year Semester IV
Course Code: AEC402 and Course Name: Fluid Mechanics
Time: 1 hour
For the students:- All the Questions are compulsory and carry equal marks .

Q1.	According to Archimede's principle, if a body is immersed partially or fully in a fluid then the buoyancy force is body.
Option A:	equal to
Option B:	less than
Option C:	more than
Option D:	unpredictable
Q2.	What is the correct formula for absolute pressure?
Option A:	$\mathrm{P}_{\text {abs }}=\mathrm{P}_{\text {atm }}-\mathrm{P}_{\text {gauge }}$
Option B:	$\mathrm{P}_{\text {abs }}=\mathrm{P}_{\text {vacuum }}-\mathrm{P}_{\text {atm }}$
Option C:	$\mathrm{P}_{\text {abs }}=\mathrm{P}_{\text {vacuum }}+\mathrm{P}_{\text {atm }}$
Option D:	$\mathrm{P}_{\text {abs }}=\mathrm{P}_{\text {atm }}+\mathrm{P}_{\text {gauge }}$
Q3.	One litre of a certain fluid weighs 8 N . What is its specific volume?
Option A:	$2.03 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{kg}$
Option B:	$20.3 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{kg}$
Option C:	$12.3 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{kg}$
Option D:	$1.23 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{kg}$
Q4.	Which type of body is an airfoil?
Option A:	streamline body
Option B:	wave body
Option C:	bluff body
Option D:	induced body
Q5.	The sum of components of shear forces in the direction of flow of fluid is called as
Option A:	shear drag
Option B:	friction drag
Option C:	skin drag
Option D:	all of the above
Q6.	Boundary layer thickness is the distance from the boundary to the point where velocity of the fluid is
Option A:	equal to 10% of free stream velocity
Option B:	equal to 50% of free stream velocity
Option C:	equal to 90% of free stream velocity

Option D:	equal to 99% of free stream velocity
Q7.	The specific weight of the fluid depends upon
Option A:	gravitational acceleration
Option B:	mass density of the fluid
Option C:	both a. and b.
Option D:	none of the above
Q8.	Navier- Stokes equation describes the motion of
Option A:	Solid substance
Option B:	Non-viscous fluid
Option C:	Viscous fluid
Option D:	Gas
Q9.	What is the velocity profile for Poiseuille flow?
Option A:	Zero
Option B:	Constant
Option C:	Linear
Option D:	Quadratic
Q10.	What is the incompressibility condition in Navier-Stokes equation?
Option A:	$\nabla . \mathrm{u}=0$
Option B:	$\nabla . \mathrm{u}>0$
Option C:	$\nabla . \mathrm{u}<0$
Option D:	$\nabla . \mathrm{u}=1$
Q11.	The value of the Bulk Modulus of an ideal fluid is
Option A:	zero
Option B:	unity
Option C:	infinity
Option D:	less than that of a real fluid
Q12.	The value of the surface tension of an ideal fluid is
Option A:	zero
Option B:	unity
Option C:	infinity
Option D:	more than that of a real fluid
Q13.	Which is the cheapest device for measuring flow / discharge rate.
Option A:	Venturimeter
Option B:	Pitot tube
Option C:	Orificemeter
Option D:	None of the mentioned
Q14.	What is the correct formula for loss at the exit of a pipe?
Option A:	$\mathrm{h}_{\mathrm{L}}=0.5\left(\mathrm{~V}^{2} / 2 \mathrm{~g}\right)$
Option B:	$\mathrm{h}_{\mathrm{L}}=\left(\mathrm{V}^{2} / 2 \mathrm{~g}\right)$
Option C:	$\mathrm{h}_{\mathrm{L}}=\left(2 \mathrm{~V}^{2} / \mathrm{g}\right)$

Option D:	$\mathrm{h}_{\mathrm{L}}=\left(4 \mathrm{~V}^{2} / \mathrm{g}\right)$
Q15.	Minor losses occur due to
Option A:	sudden enlargement in pipe
Option B:	sudden contraction in pipe
Option C:	bends in pipe
Option D:	all of the above
Q16.	What is Darcy-Weisbach formula for heat loss due to friction? Where, $\mathrm{f}=$ Darcy's coefficient of friction
Option A:	$\mathrm{h}_{\mathrm{f}}=\left(\mathrm{fl} \mathrm{l}^{2}\right) /(\mathrm{g} \mathrm{d})$
Option B:	$\mathrm{h}_{\mathrm{f}}=\left(\mathrm{fl} \mathrm{V}^{2}\right) /(2 \mathrm{~g} \mathrm{~d})$
Option C:	$\mathrm{h}_{\mathrm{f}}=\left(4 \mathrm{fl} \mathrm{V}^{2}\right) /(2 \mathrm{~g} \mathrm{~d})$
Option D:	$\mathrm{h}_{\mathrm{f}}=\left(16 \mathrm{fl} \mathrm{V}^{2}\right) /(2 \mathrm{~g} \mathrm{~d})$
Q17.	What is the ratio of maximum velocity to average velocity, when the fluid is passing through two parallel plates and flow is laminar?
Option A:	3/2
Option B:	2/3
Option C:	4/3
Option D:	3/4
Q18.	Which of the following is the correct relation between centroid (G) and the centre of pressure (P) of a plane submerged in a liquid?
Option A:	G is always below P
Option B:	P is always below G
Option C:	G is either at P or below it.
Option D:	P is either at G or below it.
Q19.	If stream function (Ψ) satisfies the Laplace equation, it is a possible case of
Option A:	a circular flow
Option B:	a rotational flow
Option C:	an irrotational flow
Option D:	none of the above
Q20.	In a steady, ideal flow of an incompressible fluid, total energy at any point of the fluid is always constant. This theorem is known as
Option A:	Euler's theorem
Option B:	Navier-stockes theorem
Option C:	Reynold's theorem
Option D:	Bernoulli's theorem
Q21.	When the net force acting on a fluid is the sum of only gravity force, pressure force and viscous force, the equation is called as
Option A:	Reynold's equation of motion
Option B:	Navier-stockes equation of motion
Option C:	Euler's equation of motion
Option D:	none of the above

Q22.	The net force of an ideal flow is equal to the sum of nonzero values of
Option A:	pressure force and gravity force
Option B:	viscous force and gravity force
Option C:	pressure force and viscous force
Option D:	pressure force, viscous force and compressibility force
Q23.	Which of the following forces generally act on fluid while considering fluid dynamics? 1.Viscous force 2.Pressure force 3.Gravity force 4.Turbulent force $5 . ~ C o m p r e s s i b i l i t y ~ f o r c e ~$
Option A:	(1), (3), (4) and (5)
Option B:	(1), (2), (3) and (5)
Option C:	(1), (2), (3) and (4)
Option D:	(1), (2), (3), (4) and (5)
Q24.	The rate of increase of velocity with respect to change in the position of fluid particle in a flow field is called as
Option A:	local acceleration
Option B:	temporal acceleration
Option C:	convective acceleration
Option D:	all of the above
Q25.	A cubic tank is completely filled with water. What will be the ratio of the hydrostatic force exerted on the base and on any one of the vertical sides?
Option A:	$1: 1$
Option B:	$2: 1$
Option C:	$1: 2$
Option D:	$3: 2$

