Rajendra Mane College of Engineering and Technology

Computer Engineering Department

Course Outcomes

Class: SE Computer

Sem:III

Subject	Course Outcomes
AMIII	1. Understand complex variable theory, application of harmonic conjugate to get orthogonal trajectories and analytic function.
	2. Plot the image of the curve by a complex transformation from z-plane to w-plane.
	3. Expand the periodic function by using Fourier series and complex form of Fourier series.
	4. Understand the concept of Laplace transform and inverse Laplace transform of various functions and its application to solve ordinary differential equations.
	5. Apply the concept of Z- transformation and its inverse of the given sequence.
	6. Apply the concept of Correlation and Regression to the engineering problems.
DM	 Understand the notion of mathematical thinking, mathematical proofs and to apply them in problem solving. Ability to reason logically. Ability to understand relations, Diagraph and lattice Ability to understand use of functions, graphs and their use in programming applications. Understand use of groups and codes in Encoding-Decoding Apply discrete structures into other computing problems such as formal specification, verification, artificial intelligence, cryptography, Data Analysis and Data Mining etc.
DLDA	 To understand different number systems and their conversions. To analyze and minimize Boolean expressions. To design and analyze combinational circuits. To design and analyze sequential circuits

	5. To understand the basic concepts of VHDL.
	6. To study basics of TTL and CMOS Logic families.
DS	 Students will be able to implement various linear and nonlinear data structures. Students will be able to handle operations like insertion, deletion, searching and traversing on various data structures. Students will be able to select appropriate sorting technique for given problem. Students will be able to select appropriate searching technique for given problem. Students will be able to apply the learned concepts in various domains like DBMS and Compiler Construction. Students will be able to choose appropriate data structure for specified problem
	domain.
ECCF	 To understand the use of semiconductor devices in circuits and analyze them. To understand importance of oscillators and power amplifiers in communication system. To understand basic concepts of operational amplifier and their applications. To understand the fundamental concepts of electronic communication To apply knowledge of electronic devices and circuits to communication applications. To study basic concepts of information theory.
ΟΟΡΜ	 To apply fundamental programming constructs. To illustrate the concept of packages, classes and objects. To elaborate the concept of strings, arrays and vectors. To implement the concept of inheritance and interfaces. To implement the notion of exception handling and multithreading. To develop GUI based application.

Class: SE Computer

Sem:IV

Subject	Course Outcomes
AMIV	 Students in this course will be able to apply the method of solving complex integration, computing residues & evaluate various contour integrals. Demonstrate ability to manipulate matrices and compute Eigen values and Eigen vectors. Apply the concept of probability distribution to the engineering problems. Apply the concept of sampling theory to the engineering problems. Use matrix algebra with its specific rules to solve the system of linear equation, using concept of Eigen value and Eigen vector to the engineering problems. Apply the concept of Linear & Non-Linear Programming Problem to the engineering problems.
AOA	 Analyze the running time and space complexity of algorithms. Describe, apply and analyze the complexity of divide and conquer strategy. Describe, apply and analyze the complexity of greedy strategy. Describe, apply and analyze the complexity of dynamic programming strategy. Explain and apply backtracking, branch and bound and string matching techniques to deal with some hard problems. Describe the classes P, NP, and NP-Complete and be able to prove that a certain problem is NP-Complete.
CG	 Understand the basic concepts of Computer Graphics. Demonstrate various algorithms for scan conversion and filling of basic objects and their comparative analysis. Apply geometric transformations, viewing and clipping on graphical objects. Explore solid model representation techniques and projections. Understand visible surface detection techniques and illumination models.
COA	 To describe basic structure of the computer system. To demonstrate the arithmetic algorithms for solving ALU operations. To describe instruction level parallelism and hazards in typical processor pipelines. To describe superscalar architectures, multi-core architecture and their advantages To demonstrate the memory mapping techniques. To Identify various types of buses, interrupts and I/O operations in a computer system

OS	1. Understand role of Operating System in terms of process, memory, file and I/O management.
	2. Apply and analyse the concept of a process, thread, mutual exclusion and deadlock.
	3. Evaluate performance of process scheduling algorithms and IPC.
	4. Apply and analyse the concepts of memory management techniques.
	5. Evaluate the performance of memory allocation and replacement techniques.
	6. Apply and analyze different techniques of file and I/O management.
OST	1. To understand basic concepts in python and perl.
	2. To explore contents of files, directories and text processing with python
	3. To develop program for data structure using built in functions in python.
	4. To explore django web framework for developing python based web application.
	5. To understand file handling and database handling using perl.
	6. To explore basics of two way communication between client and server using python and perl

Class: TE Computer

Г

Sem:V

Subject	Course Outcomes
MP	1. Describe architecture of x86 processors.
	2. Interpret the instructions of \$086 and write assembly and Mixed language programs.
	3. Explain the concept of interrupts
	4. Identify the specifications of peripheral chip
	5. Design 8086 based system using memory and peripheral chips
	6. Appraise the architecture of advanced processors
DBMS	1. Understand the fundamentals of a database systems
	2. Design and draw ER and EER diagram for the real life problem.
	3. Convert conceptual model to relational model and formulate relational algebra queries.
	4. Design and querying database using SQL.
	5. Analyze and apply concepts of normalization to relational database design.
	6. Understand the concept of transaction, concurrency and recovery.
CN	1. Demonstrate the concepts of data communication at physical layer and compare ISO -
	OSI model
	with TCP/IP model.
	2. Demonstrate the knowledge of networking protocols at data link layer.
	3. Design the network using IP addressing and subnetting / supernetting schemes.
	4. Analyze various routing algorithms and protocols at network layer.
	5. Analyze transport layer protocols and congestion control algorithms.
	6. Explore protocols at application layer .
TCS	1. Identify the central concepts in theory of computation and differentiate between
	deterministic and
	nondeterministic automata, also obtain equivalence of NFA and DFA.
	2. Infer the equivalence of languages described by finite automata and regular
	expressions.
	3. Devise regular, context free grammars while recognizing the strings and tokens.
	4. Design pushdown automata to recognize the language.
	5. Develop an understanding of computation through Turing Machine.
	6. Acquire fundamental understanding of decidability and undecidability.
MS	1. To identify basics of multimedia and multimedia system architecture.
	2. To understand different multimedia components.
	3. To explain file formats for different multimedia components.
	4. To analyze the different compression algorithms.
	5. To describe various multimedia communication techniques.
	6. To apply different security techniques in multimedia environment.

Class: TE Computer

Sem:VI

Subject	Course Outcomes
SE	1. Understand and demonstrate basic knowledge in software engineering.
	2. Identify requirements, analyze and prepare models.
	3. Plan, schedule and track the progress of the projects.
	4. Design & develop the software projects.
	5. Identify risks, manage the change to assure quality in software projects.
	6. Apply testing principles on software project and understand the maintenance concepts.
SPCC	1. Identify the relevance of different system programs.
	2. Describe the various data structures and passes of assembler design.
	3. Identify the need for different features and designing of macros.
	4. Distinguish different loaders and linkers and their contribution in developing efficient
	user applications.
	5. Construct different parsers for given context free grammars.
	6. Justify the need synthesis phase to produce object code optimized in terms of high
	execution speed and less memory usage
DWM	1. Understand Data Warehouse fundamentals, Data Mining Principles
2000	2. Design data warehouse with dimensional modelling and apply OLAP operations.
	3. Identify appropriate data mining algorithms to solve real world problems
	4. Compare and evaluate different data mining techniques like classification, prediction,
	clustering and association rule mining
	5. Describe complex data types with respect to spatial and web mining.
	6. Benefit the user experiences towards research and innovation.
CSS	1. Understand system security goals and concepts, classical encryption techniques and
	acquire fundamental knowledge on the concepts of modular arithmetic and number
	theory.
	2. Understand, compare and apply different encryption and decryption techniques to
	solve problems related to confidentiality and authentication
	3. Apply the knowledge of cryptographic checksums and evaluate the performance of
	different message digest algorithms for verifying the integrity of varying message sizes.
	4. Apply different digital signature algorithms to achieve authentication and design
	secure applications.
	5. Understand network security basics, analyze different attacks on networks and
	evaluate the performance of firewalls and security protocols like SSL, IPSec, and PGP.
	6. Analyze and apply system security concept to recognize malicious code.
ML	1. Gain knowledge about basic concepts of Machine Learning
	2. Identify machine learning techniques suitable for a given problem
	3. Solve the problems using various machine learning techniques
	4. Apply Dimensionality reduction techniques.
	5. Design application using machine learning techniques

Class: BE Computer

Subject	Course Outcomes
DSIP	1. Apply the concept of DT Signal and DT Systems.
	2. Classify and analyze discrete time signals and systems
	3. Implement Digital Signal Transform techniques DFT and FFT.
	4. Use the enhancement techniques for digital Image Processing
	5. Differentiate between the advantages and disadvantages of different edge detection
	techniques
	6. Develop small projects of 1-D and 2-D Digital Signal Processing.
MCC	1. To identify basic concepts and principles in mobile communication & computing,
	cellular
	architecture.
	2. To describe the components and functioning of mobile networking.
	3. To classify variety of security techniques in mobile network.
	4. To apply the concepts of WLAN for local as well as remote applications.
	5. To describe and apply the concepts of mobility management
	6. To describe Long Term Evolution (LTE) architecture and its interfaces.
AISC	1 Identify the various characteristics of Artificial Intelligence and Soft Computing
	techniques.
	2 Choose an appropriate problem solving method for an agent to find a sequence of
	actions to reach the goal state.
	3 Analyse the strength and weakness of AI approaches to knowledge representation,
	reasoning and planning.
	4 Construct supervised and unsupervised ANN for real world applications.
	5 Design fuzzy controller system.
	6 Apply Hybrid approach for expert system design.
ASSDF	1. Understand cyber attacks and apply access control policies and control mechanisms.
ASSOL	2. Identify malicious code and targeted malicious code.
	3. Detect and counter threats to web applications.
	4. Understand the vulnerabilities of Wi-Fi networks and explore different measures to
	secure wireless protocols, WLAN and VPN networks.
	5. Understand the ethical and legal issues associated with cyber crimes and be able to
	mitigate impact of crimes with suitable policies.
	6. Use different forensic tools to acquire and duplicate data from compromised systems
	and analyse the same.
BDA	1. Understand the key issues in big data management and its associated applications for
DDA	business decisions and strategy.
	1. Develop problem solving and critical thinking skills in fundamental enabling
	techniques like Hadoop, Mapreduce and NoSQL in big data analytics.
	2. Collect, manage, store, query and analyze various forms of Big Data.
	3. Interpret business models and scientific computing paradigms, and apply software
	tools for big data analytics.
	4. Adapt adequate perspectives of big data analytics in various applications like
	recommender systems, social media applications etc.

Class: BE Computer

Sem:VIII

Subject	Course Outcomes
НМІ	1. Identify User Interface (UI) design principles.
	2. Analysis of effective user friendly interfaces.
	3. Apply Interactive Design process in real world applications.
	4. Evaluate UI design and justify.
	5. Create application for social and technical task.
HPC	1. Memorize parallel processing approaches
	2. Describe different parallel processing platforms involved in achieving High
	Performance Computing.
	3. Discuss different design issues in parallel programming
	4. Develop efficient and high performance parallel programming
	5. Learn parallel programming using message passing paradigm using open source APIs.
NLP	1. Have a broad understanding of the field of natural language processing.
	2. Have a sense of the capabilities and limitations of current natural language
	technologies,
	3. Be able to model linguistic phenomena with formal grammars.
	4. Be able to Design, implement and test algorithms for NLP problems
	5. Understand the mathematical and linguistic foundations underlying approaches to the
	various areas in NLP
	6. Be able to apply NLP techniques to design real world NLP applications such as
	machine translation, text categorization, text summarization, information extractionetc.
AWN	1. Identify the characteristics and features of Adhoc Networks.
/	2. Understand the concepts & be able to design MAC protocols for Ad Hoc networks
	3. Implement protocols / Carry out simulation of routing protocols of Adhoc Networks
	4. Interpret the flow control in transport layer of Ad Hoc Networks
	5. Analyze security principles for routing of Ad Hoc Networks
	6. Utilize the concepts of Adhoc Networks in VANETs
CCL	•
001	1. Adapt different types of virtualization and increase resource utilization.
	2. Build a private cloud using open source technologies.
	3. Analyze security issues on cloud.
	4. Develop real world web applications and deploy on commercial cloud.
	5. Demonstrate various service models.